References
- M.N. Chong, B. Jin, C.W. Chow, C. Saint, Recent developments
in photocatalytic water treatment technology: a review, Water
Res., 44 (2010) 2997–3027.
- S. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco, W.
Gernjak, Decontamination and disinfection of water by solar
photocatalysis: recent overview and trends, Catal. Today, 147
(2009) 1–59.
- I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic
degradation of azo dyes in aqueous solution: kinetic and
mechanistic investigations: a review, Appl. Catal., B, 49 (2004)
1–14.
- U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic
degradation of organic contaminants over titanium dioxide: a
review of fundamentals, progress and problems, J. Photochem.
Photobiol., C, 9 (2008) 1–12.
- L. Mansouri, L. Bousselmi, Degradation of diethyl phthalate
(DEP) in aqueous solution using TiO2/UV process, Desal. Wat.
Treat., 40 (2012) 63–68.
- K. Nakata, A. Fujishima, TiO2 photocatalysis: design and
applications, J. Photochem. Photobiol., C, 13 (2012) 169–189.
- V. Mahmoodi, J. Sargolzaei, Optimization of photocatalytic
degradation of naphthalene using nano-TiO2/UV system:
statistical analysis by a response surface methodology, Desal.
Wat. Treat., 52 (2014) 6664–6672.
- R.R. Kalantary, Y. Dadban Shahamat, M. Farzadkia, A. Esrafili,
H. Asgharnia, Photocatalytic degradation and mineralization of
diazinon in aqueous solution using nano-TiO2 (Degussa, P25):
kinetic and statistical analysis, Desal. Wat. Treat., 55 (2015)
555–563.
- T. Kaur, A.P. Toor, R.K. Wanchoo, Parametric study on
degradation of fungicide carbendazim in dilute aqueous
solutions using nano TiO2, Desal. Wat. Treat., 54 (2015) 122–131.
- L. Mao, J. Shen, X. Ma, Z. Lan, X. Zhang, Effects of operational
parameters on the photodegradation of 2,4-dinitrophenol in
TiO2 dispersion, Desal. Wat. Treat., 56 (2015) 744–751.
- A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide
photocatalysis, J. Photochem. Photobiol., C, 1 (2000) 1–21.
- N. San, A. Hatipoğlu, G. Koçtürk, Z. Çınar, Photocatalytic
degradation of 4-nitrophenol in aqueous TiO2 suspensions:
theoretical prediction of the intermediates, J. Photochem.
Photobiol., A, 146 (2002) 189–197.
- U.G. Akpan, B.H. Hameed, Parameters affecting the
photocatalytic degradation of dyes using TiO2-based
photocatalysts: a review, J. Hazard. Mater., 170 (2009) 520–529.
- W. Li, D. Li, Y. Lin, P. Wang, W. Chen, X. Fu, Y. Shao, Evidence
for the active species involved in the photodegradation
process of methyl orange on TiO2, J. Phys. Chem. C, 116 (2012)
3552–3560.
- W.Y. Teoh, J.A. Scott, R. Amal, Progress in heterogeneous
photocatalysis: from classical radical chemistry to engineering
nanomaterials and solar reactors, J. Phys. Chem. Lett., 3 (2012)
629–639.
- H. Czili, A. Horváth, Applicability of coumarin for detecting
and measuring hydroxyl radicals generated by photoexcitation
of TiO2 nanoparticles, Appl. Catal., B, 81 (2008) 295–302.
- Q. Xiang, J. Yu, P.K. Wong, Quantitative characterization
of hydroxyl radicals produced by various photocatalysts, J.
Colloid Interface Sci., 357 (2011) 163–167.
- T. Wu, T. Lin, J. Zhao, H. Hidaka, N. Serpone, TiO2-assisted
photodegradation of dyes. 9. Photooxidation of a squarylium
cyanine dye in aqueous dispersions under visible light
irradiation, Environ. Sci. Technol., 33 (1999) 1379–1387.
- W. Zhao, C. Chen, X. Li, J. Zhao, H. Hidaka, N. Serpone,
Photodegradation of sulforhodamine-B dye in platinized
titania dispersions under visible light irradiation: influence of
platinum as a functional co-catalyst, J. Phys. Chem. B, 106 (2002)
5022–5028.
- W. Li, D. Li, J. Xian, W. Chen, Y. Hu, Y. Shao, X. Fu, Specific
analyses of the active species on Zn0.28Cd0.72S and TiO2
photocatalysts in the degradation of methyl orange, J. Phys.
Chem. C, 114 (2010) 21482–21492.
- Z. Wang, W. Ma, C. Chen, H. Ji, J. Zhao, Probing paramagnetic
species in titania-based heterogeneous photocatalysis by
electron spin resonance (ESR) spectroscopy – a mini review,
Chem. Eng. J., 170 (2011) 353–362.
- C.H. Tsai, A. Stern, J.F. Chiou, C.L. Chern, T.Z. Liu,
Rapid and specific detection of hydroxyl radical using an
ultraweak chemiluminescence analyzer and a low-level
chemiluminescence emitter: application to hydroxyl radicalscavenging
ability of aqueous extracts of food constituents, J.
Agric. Food. Chem., 49 (2001) 2137–2141.
- K.I. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto,
Detection of active oxidative species in TiO2 photocatalysis
using the fluorescence technique, Electrochem. Commun., 2
(2000) 207–210.
- T. Hirakawa, K. Yawata, Y. Nosaka, Photocatalytic reactivity
for O2− and OH radical formation in anatase and rutile TiO2
suspension as the effect of H2O2 addition, Appl. Catal., A, 325
(2007) 105–111.
- J. Yu, W. Wang, B. Cheng, B.L. Su, Enhancement of photocatalytic
activity of mesporous TiO2 powders by hydrothermal surface
fluorination treatment, J. Phys. Chem. C, 113 (2009) 6743–6750.
- T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, Photo-electrochemical
hydrogen generation from water using solar energy. Materialsrelated
aspects, Int. J. Hydrogen Energy, 27 (2002) 991–1022.
- D. Chatterjee, A. Mahata, Photoassisted detoxification of
organic pollutants on the surface modified TiO2 semiconductor
particulate system, Catal. Commun., 2 (2001) 1–3.
- D. Jiang, Y. Xu, D. Wu, Y. Sun, Visible-light responsive dyemodified
TiO2 photocatalyst, J. Solid State Chem., 181 (2008)
593–602.
- L. Wu, C.Y. Jimmy, X. Fu, Characterization and photocatalytic
mechanism of nanosized CdS coupled TiO2 nanocrystals under
visible light irradiation, J. Mol. Catal. A: Chem., 244 (2006)
25–32.
- W. Ho, C.Y. Jimmy, Sonochemical synthesis and visible light
photocatalytic behavior of CdSe and CdSe/TiO2 nanoparticles,
J. Mol. Catal. A: Chem., 247 (2006) 268–274.
- R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light
photocatalysis in nitrogen-doped titanium oxides, Science, 293
(2001) 269–271.
- J.C. Yu, J. Yu, W. Ho, Z. Jiang, L. Zhang, Effects of F-doping on the
photocatalytic activity and microstructures of nanocrystalline
TiO2 powders, Chem. Mater., 14 (2002) 3808–3816.
- B. Xin, P. Wang, D. Ding, J. Liu, Z. Ren, H. Fu, Effect of surface
species on Cu-TiO2 photocatalytic activity, Appl. Surf. Sci., 254
(2008) 2569–2574.
- L.G. Devi, N. Kottam, B.N. Murthy, S.G. Kumar, Enhanced
photocatalytic activity of transition metal ions Mn2+, Ni2+ and
Zn2+ doped polycrystalline titania for the degradation of Aniline
Blue under UV/solar light, J. Mol. Catal. A: Chem., 328 (2010)
44–52.
- H. Kyung, J. Lee, W. Choi, Simultaneous and synergistic
conversion of dyes and heavy metal ions in aqueous TiO2
suspensions under visible-light illumination, Environ. Sci.
Technol., 39 (2005) 2376–2382.
- H. Eskandarloo, A. Badiei, M.A. Behnajady, Study of the
effect of additives on the photocatalytic degradation of a
triphenylmethane dye in the presence of immobilized TiO2/NiO
nanoparticles: artificial neural network modeling, Ind. Eng.
Chem. Res., 53 (2014) 6881–6895.
- Y.S. Wang, J.H. Shen, J.J. Horng, Chromate enhanced visible
light driven TiO2 photocatalytic mechanism on Acid Orange 7
photodegradation, J. Hazard. Mater., 274 (2014) 420–427.
- S.G. Schrank, H.J. José, R.F.P.M. Moreira, Simultaneous
photocatalytic Cr(VI) reduction and dye oxidation in a TiO2
slurry reactor, J. Photochem. Photobiol., A, 147 (2002) 71–76.
- G. Louit, S. Foley, J. Cabillic, H. Coffigny, F. Taran, A. Valleix,
J.P. Renault, S. Pin, The reaction of coumarin with the OH
radical revisited: hydroxylation product analysis determined
by fluorescence and chromatography, Radiat. Phys. Chem., 72
(2005) 119–124.
- M. Tokumura, R. Morito, R. Hatayama, Y. Kawase, Iron redox
cycling in hydroxyl radical generation during the photo-Fenton
oxidative degradation: dynamic change of hydroxyl radical
concentration, Appl. Catal., B, 106 (2011) 565–576.
- I.S. Grover, S. Singh, B. Pal, The preparation, surface structure,
zeta potential, surface charge density and photocatalytic
activity of TiO2 nanostructures of different shapes, Appl. Surf.
Sci., 280 (2013) 366–372.
- P. Bansal, D. Singh, D. Sud, Photocatalytic degradation of
azo dye in aqueous TiO2 suspension: reaction pathway and
identification of intermediates products by LC/MS, Sep. Purif.
Technol., 72 (2010) 357–365.
- W. Han, P. Zhang, W. Zhu, J. Yin, L. Li, Photocatalysis of
p-chlorobenzoic acid in aqueous solution under irradiation of
254 nm and 185 nm UV light, Water Res., 38 (2004) 4197–4203.
- I. García-Fernández, I. Fernández-Calderero, M.I. Polo-López,
P. Fernández-Ibáñez, Disinfection of urban effluents using
solar TiO2 photocatalysis: a study of significance of dissolved
oxygen, temperature, type of microorganism and water matrix,
Catal. Today, 240 (2015) 30–38.
- K.I. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto,
Quantum yields of active oxidative species formed on TiO2
photocatalyst, J. Photochem. Photobiol., A, 134 (2000) 139–142.
- J. Zhang, Y. Nosaka, Quantitative detection of OH radicals for
investigating the reaction mechanism of various visible-light
TiO2 photocatalysts in aqueous suspension, J. Phys. Chem. C,
117 (2013) 1383–1391.
- S. Rehman, R. Ullah, A.M. Butt, N.D. Gohar, Strategies of
making TiO2 and ZnO visible light active, J. Hazard. Mater., 170
(2009) 560–569.