References

  1. M.N. Chong, B. Jin, C.W. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review, Water Res., 44 (2010) 2997–3027.
  2. S. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: recent overview and trends, Catal. Today, 147 (2009) 1–59.
  3. I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review, Appl. Catal., B, 49 (2004) 1–14.
  4. U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems, J. Photochem. Photobiol., C, 9 (2008) 1–12.
  5. L. Mansouri, L. Bousselmi, Degradation of diethyl phthalate (DEP) in aqueous solution using TiO2/UV process, Desal. Wat. Treat., 40 (2012) 63–68.
  6. K. Nakata, A. Fujishima, TiO2 photocatalysis: design and applications, J. Photochem. Photobiol., C, 13 (2012) 169–189.
  7. V. Mahmoodi, J. Sargolzaei, Optimization of photocatalytic degradation of naphthalene using nano-TiO2/UV system: statistical analysis by a response surface methodology, Desal. Wat. Treat., 52 (2014) 6664–6672.
  8. R.R. Kalantary, Y. Dadban Shahamat, M. Farzadkia, A. Esrafili, H. Asgharnia, Photocatalytic degradation and mineralization of diazinon in aqueous solution using nano-TiO2 (Degussa, P25): kinetic and statistical analysis, Desal. Wat. Treat., 55 (2015) 555–563.
  9. T. Kaur, A.P. Toor, R.K. Wanchoo, Parametric study on degradation of fungicide carbendazim in dilute aqueous solutions using nano TiO2, Desal. Wat. Treat., 54 (2015) 122–131.
  10. L. Mao, J. Shen, X. Ma, Z. Lan, X. Zhang, Effects of operational parameters on the photodegradation of 2,4-dinitrophenol in TiO2 dispersion, Desal. Wat. Treat., 56 (2015) 744–751.
  11. A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol., C, 1 (2000) 1–21.
  12. N. San, A. Hatipoğlu, G. Koçtürk, Z. Çınar, Photocatalytic degradation of 4-nitrophenol in aqueous TiO2 suspensions: theoretical prediction of the intermediates, J. Photochem. Photobiol., A, 146 (2002) 189–197.
  13. U.G. Akpan, B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review, J. Hazard. Mater., 170 (2009) 520–529.
  14. W. Li, D. Li, Y. Lin, P. Wang, W. Chen, X. Fu, Y. Shao, Evidence for the active species involved in the photodegradation process of methyl orange on TiO2, J. Phys. Chem. C, 116 (2012) 3552–3560.
  15. W.Y. Teoh, J.A. Scott, R. Amal, Progress in heterogeneous photocatalysis: from classical radical chemistry to engineering nanomaterials and solar reactors, J. Phys. Chem. Lett., 3 (2012) 629–639.
  16. H. Czili, A. Horváth, Applicability of coumarin for detecting and measuring hydroxyl radicals generated by photoexcitation of TiO2 nanoparticles, Appl. Catal., B, 81 (2008) 295–302.
  17. Q. Xiang, J. Yu, P.K. Wong, Quantitative characterization of hydroxyl radicals produced by various photocatalysts, J. Colloid Interface Sci., 357 (2011) 163–167.
  18. T. Wu, T. Lin, J. Zhao, H. Hidaka, N. Serpone, TiO2-assisted photodegradation of dyes. 9. Photooxidation of a squarylium cyanine dye in aqueous dispersions under visible light irradiation, Environ. Sci. Technol., 33 (1999) 1379–1387.
  19. W. Zhao, C. Chen, X. Li, J. Zhao, H. Hidaka, N. Serpone, Photodegradation of sulforhodamine-B dye in platinized titania dispersions under visible light irradiation: influence of platinum as a functional co-catalyst, J. Phys. Chem. B, 106 (2002) 5022–5028.
  20. W. Li, D. Li, J. Xian, W. Chen, Y. Hu, Y. Shao, X. Fu, Specific analyses of the active species on Zn0.28Cd0.72S and TiO2 photocatalysts in the degradation of methyl orange, J. Phys. Chem. C, 114 (2010) 21482–21492.
  21. Z. Wang, W. Ma, C. Chen, H. Ji, J. Zhao, Probing paramagnetic species in titania-based heterogeneous photocatalysis by electron spin resonance (ESR) spectroscopy – a mini review, Chem. Eng. J., 170 (2011) 353–362.
  22. C.H. Tsai, A. Stern, J.F. Chiou, C.L. Chern, T.Z. Liu, Rapid and specific detection of hydroxyl radical using an ultraweak chemiluminescence analyzer and a low-level chemiluminescence emitter: application to hydroxyl radicalscavenging ability of aqueous extracts of food constituents, J. Agric. Food. Chem., 49 (2001) 2137–2141.
  23. K.I. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique, Electrochem. Commun., 2 (2000) 207–210.
  24. T. Hirakawa, K. Yawata, Y. Nosaka, Photocatalytic reactivity for O2 and OH radical formation in anatase and rutile TiO2 suspension as the effect of H2O2 addition, Appl. Catal., A, 325 (2007) 105–111.
  25. J. Yu, W. Wang, B. Cheng, B.L. Su, Enhancement of photocatalytic activity of mesporous TiO2 powders by hydrothermal surface fluorination treatment, J. Phys. Chem. C, 113 (2009) 6743–6750.
  26. T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, Photo-electrochemical hydrogen generation from water using solar energy. Materialsrelated aspects, Int. J. Hydrogen Energy, 27 (2002) 991–1022.
  27. D. Chatterjee, A. Mahata, Photoassisted detoxification of organic pollutants on the surface modified TiO2 semiconductor particulate system, Catal. Commun., 2 (2001) 1–3.
  28. D. Jiang, Y. Xu, D. Wu, Y. Sun, Visible-light responsive dyemodified TiO2 photocatalyst, J. Solid State Chem., 181 (2008) 593–602.
  29. L. Wu, C.Y. Jimmy, X. Fu, Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation, J. Mol. Catal. A: Chem., 244 (2006) 25–32.
  30. W. Ho, C.Y. Jimmy, Sonochemical synthesis and visible light photocatalytic behavior of CdSe and CdSe/TiO2 nanoparticles, J. Mol. Catal. A: Chem., 247 (2006) 268–274.
  31. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 293 (2001) 269–271.
  32. J.C. Yu, J. Yu, W. Ho, Z. Jiang, L. Zhang, Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders, Chem. Mater., 14 (2002) 3808–3816.
  33. B. Xin, P. Wang, D. Ding, J. Liu, Z. Ren, H. Fu, Effect of surface species on Cu-TiO2 photocatalytic activity, Appl. Surf. Sci., 254 (2008) 2569–2574.
  34. L.G. Devi, N. Kottam, B.N. Murthy, S.G. Kumar, Enhanced photocatalytic activity of transition metal ions Mn2+, Ni2+ and Zn2+ doped polycrystalline titania for the degradation of Aniline Blue under UV/solar light, J. Mol. Catal. A: Chem., 328 (2010) 44–52.
  35. H. Kyung, J. Lee, W. Choi, Simultaneous and synergistic conversion of dyes and heavy metal ions in aqueous TiO2 suspensions under visible-light illumination, Environ. Sci. Technol., 39 (2005) 2376–2382.
  36. H. Eskandarloo, A. Badiei, M.A. Behnajady, Study of the effect of additives on the photocatalytic degradation of a triphenylmethane dye in the presence of immobilized TiO2/NiO nanoparticles: artificial neural network modeling, Ind. Eng. Chem. Res., 53 (2014) 6881–6895.
  37. Y.S. Wang, J.H. Shen, J.J. Horng, Chromate enhanced visible light driven TiO2 photocatalytic mechanism on Acid Orange 7 photodegradation, J. Hazard. Mater., 274 (2014) 420–427.
  38. S.G. Schrank, H.J. José, R.F.P.M. Moreira, Simultaneous photocatalytic Cr(VI) reduction and dye oxidation in a TiO2 slurry reactor, J. Photochem. Photobiol., A, 147 (2002) 71–76.
  39. G. Louit, S. Foley, J. Cabillic, H. Coffigny, F. Taran, A. Valleix, J.P. Renault, S. Pin, The reaction of coumarin with the OH radical revisited: hydroxylation product analysis determined by fluorescence and chromatography, Radiat. Phys. Chem., 72 (2005) 119–124.
  40. M. Tokumura, R. Morito, R. Hatayama, Y. Kawase, Iron redox cycling in hydroxyl radical generation during the photo-Fenton oxidative degradation: dynamic change of hydroxyl radical concentration, Appl. Catal., B, 106 (2011) 565–576.
  41. I.S. Grover, S. Singh, B. Pal, The preparation, surface structure, zeta potential, surface charge density and photocatalytic activity of TiO2 nanostructures of different shapes, Appl. Surf. Sci., 280 (2013) 366–372.
  42. P. Bansal, D. Singh, D. Sud, Photocatalytic degradation of azo dye in aqueous TiO2 suspension: reaction pathway and identification of intermediates products by LC/MS, Sep. Purif. Technol., 72 (2010) 357–365.
  43. W. Han, P. Zhang, W. Zhu, J. Yin, L. Li, Photocatalysis of p-chlorobenzoic acid in aqueous solution under irradiation of 254 nm and 185 nm UV light, Water Res., 38 (2004) 4197–4203.
  44. I. García-Fernández, I. Fernández-Calderero, M.I. Polo-López, P. Fernández-Ibáñez, Disinfection of urban effluents using solar TiO2 photocatalysis: a study of significance of dissolved oxygen, temperature, type of microorganism and water matrix, Catal. Today, 240 (2015) 30–38.
  45. K.I. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, Quantum yields of active oxidative species formed on TiO2 photocatalyst, J. Photochem. Photobiol., A, 134 (2000) 139–142.
  46. J. Zhang, Y. Nosaka, Quantitative detection of OH radicals for investigating the reaction mechanism of various visible-light TiO2 photocatalysts in aqueous suspension, J. Phys. Chem. C, 117 (2013) 1383–1391.
  47. S. Rehman, R. Ullah, A.M. Butt, N.D. Gohar, Strategies of making TiO2 and ZnO visible light active, J. Hazard. Mater., 170 (2009) 560–569.