References

  1. M.E. Argun, S. Dursun, C. Ozdemir, M. Karatas, Heavy metal adsorption by modified oak sawdust: thermodynamics and kinetics, J. Hazard. Mater., 141 (2007) 77–85.
  2. K. Vijayaraghavan, J. Jegan, K. Palanivelu, M. Velan, Batch and column removal of copper from aqueous solution using a brown marine alga Turbinaria ornata, Chem. Eng. J., 106 (2005) 177–184.
  3. N. Hafiza, A. Razak, S.M. Praveena, Z. Hashim, A. Zaharin, Drinking water studies: a review on heavy metal, application of biomarker and health risk assessment, J. Epidemiol. Global Health, 5 (2015) 297–310.
  4. F. Wang, X.W. Lu, X.Y. Li, Selective removals of heavy metals (Pb2+, Cu2+, and Cd2+) from wastewater by gelation with alginate for effective metal recovery, J. Hazard. Mater., 308 (2016) 75–83.
  5. M.T. Alvarez, C. Crespo, B. Mattiasson, Precipitation of Zn(II), Cu(II) and Pb(II) at bench-scale using biogenic hydrogen sulfide from the utilization of volatile fatty acids, Chemosphere, 66 (2007) 1677–1683.
  6. T.M. Zewail, N.S. Yousef, Kinetic study of heavy metal ions removal by ion exchange in batch conical air spouted bed, Alexandria Eng. J., 54 (2015) 83–90.
  7. A.A. Ismail, R.M. Mohamed, I. AIbrahim, G. Kini, B. Koopman, Synthesis, optimization and characterization of zeolite A and its ion exchange properties, Colloids Surf. A, 366 (2010) 80–87.
  8. S.K. Gunatilake, Methods of removing heavy metals from industrial wastewater, J. Multidiscip. Eng. Sci. Stud., 1 (2015) 12–18.
  9. X. Chen, G. Huang, J. Wang, Electrochemical reduction/oxidation in the treatment of heavy metal wastewater, J. Metall. Eng., 2 (2013) 161–164.
  10. E. Friehs, Y. AlSalka, R. Jonczyk, A. Lavrentieva, A. Jochums, J.-G. Walter, F. Stahl, T. Scheper, D. Bahnemann, Toxicity, phototoxicity and biocidal activity of nanoparticles employed in photocatalysis, J. Photochem. Photobiol. C, 29 (2016) 1–28.
  11. A. Ren, C. Liu, Y. Hong, W. Shi, S. Lin, P. Li, Enhanced visiblelight- driven photocatalytic activity for antibiotic degradation using magnetic NiFe2O4/Bi2O3 heterostructures, Chem. Eng. J., 258 (2014) 301–308.
  12. H.Y. Zhu, R. Jiang, S.H. Huang, J. Yao, F.Q. Fu, J.B. Li, Novel magnetic NiFe2O4/multi-walled carbon nanotubes hybrids: facile synthesis, characterization, and application to the treatment of dyeing wastewater, Ceram. Int., 41 (2015) 11625–11631.
  13. T. Peng, X. Zhang, H. Lv, L. Zan, Preparation of NiFe2O4 nanoparticles and its visible-light-driven photoactivity for hydrogen production, Catal. Commun., 28 (2012) 116–119.
  14. S.V. Bhosale, N.S. Kanhe, S.V. Bhoraskar, S.K. Bhat, R.N. Bulakhe, J.J. Shim, V.L. Mathe, Micro-structural analysis of NiFe2O4 nanoparticles synthesized by thermal plasma route and its suitability for BSA adsorption, J. Mater. Sci., 26 (2015) 216–230.
  15. Q. Chen, Y. Zhang, D. Zhang, Y. Yang, Ag and N co-doped TiO2 nanostructured photocatalyst for printing and dyeing wastewater, J. Water Process Eng., 16 (2017) 14–20.
  16. Y. Deng, J.D. Englehardt, Treatment of landfill leachate by the Fenton process, Water Res., 40 (2006) 3683–3694.
  17. A.Z. Gotvajn, J. Zagorc-Koncan, M. Cotman, Fenton’s oxidative treatment of municipal landfill leachate as an alternative to biological process, Desalination, 275 (2011) 269–275.
  18. E. Kattel, M. Trapido, N. Dulova, Treatment of landfill leachate by continuously reused ferric oxyhydroxide sludge-activated hydrogen peroxide, Chem. Eng. J., 304 (2016) 646–654.
  19. S. Cortez, P. Teixeira, R. Oliveira, M. Mota, Evaluation of Fenton and ozone-based advanced oxidation processes as mature landfill leachate pre-treatments, J. Environ. Manage., 92 (2011) 749–755.
  20. S. Malato, P. Fernández-Ibánez, M.I. Maldonado, J. Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: recent overview and trends, Catal. Today, 147 (2009) 1–59.
  21. J.-A. Park, H.-L. Nam, J.-W. Choi, J. Ha, S.-H. Lee, Oxidation of geosmin and 2-methylisoborneol by the photo-Fenton process: kinetics, degradation intermediates, and the removal of microcystin-LR and trihalomethane from Nak-Dong River water, South Korea, Chem. Eng. J., 313 (2017) 345–354.
  22. Z. Ai, L. Lu, J. Li, L. Zhang, J. Qiu, M. Wu, Fe@Fe2O3 core-shell nanowires as iron reagent. 2. An efficient and reusable sonofenton system working at neutral pH, J. Phys. Chem. C, 111 (2007) 7430–7436.
  23. J. Yu, X. Yu, B. Huang, X. Zhang, Y. Dai, Hydrothermal synthesis and visible-light photocatalytic activity of novel cage-like ferric oxide hollow spheres, Cryst. Growth Des., 9 (2009) 1474–1480.
  24. N. Chen, G. Fang, D. Zhou, J. Gao, Effects of clay minerals on diethyl phthalate degradation in Fenton reactions, Chemosphere, 165 (2016) 52–58.
  25. K. Tezuka, M. Kogure, Y.J. Shan, Photocatalytic degradation of acetic acid on spinel ferrites MFe2O4 (M = Mg, Zn, and Cd), Catal. Commun., 48 (2014) 11–14.
  26. H.W. Nesbitt, D. Legrand, G.M. Bancroft, Interpretation of Ni2p XPS spectra of Ni conductors and Ni insulators, Phys. Chem. Miner., 27 (2000) 357–366.
  27. D. Chen, F. Zhang, Q. Li, W. Wang, G. Qian, Y. Jin, Z. Xu, A promising synergistic effect of nickel ferrite loaded on the layered double hydroxide-derived carrier for enhanced photocatalytic hydrogen evolution, Int. J. Hydrogen Energy, 42 (2017) 867–875.
  28. S.-Q. Liu, B. Xiao, L.-R. Feng, S.-S. Zhou, Z.-G. Chen, C.-B. Liu, F. Chen, Z.-Y. Wu, N. Xu, W.-C. Oh, Z.-D. Meng, Graphene oxide enhances the Fenton-like photocatalytic activity of nickel ferrite for degradation of dyes under visible light irradiation, Carbon, 64 (2013) 197–206.
  29. T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions oxide materials, Appl. Surf. Sci., 254 (2008) 2441–2449.