References
- M.E. Argun, S. Dursun, C. Ozdemir, M. Karatas, Heavy metal
adsorption by modified oak sawdust: thermodynamics and
kinetics, J. Hazard. Mater., 141 (2007) 77–85.
- K. Vijayaraghavan, J. Jegan, K. Palanivelu, M. Velan, Batch
and column removal of copper from aqueous solution using a
brown marine alga Turbinaria ornata, Chem. Eng. J., 106 (2005)
177–184.
- N. Hafiza, A. Razak, S.M. Praveena, Z. Hashim, A. Zaharin,
Drinking water studies: a review on heavy metal, application
of biomarker and health risk assessment, J. Epidemiol. Global
Health, 5 (2015) 297–310.
- F. Wang, X.W. Lu, X.Y. Li, Selective removals of heavy metals
(Pb2+, Cu2+, and Cd2+) from wastewater by gelation with alginate
for effective metal recovery, J. Hazard. Mater., 308 (2016) 75–83.
- M.T. Alvarez, C. Crespo, B. Mattiasson, Precipitation of Zn(II),
Cu(II) and Pb(II) at bench-scale using biogenic hydrogen
sulfide from the utilization of volatile fatty acids, Chemosphere,
66 (2007) 1677–1683.
- T.M. Zewail, N.S. Yousef, Kinetic study of heavy metal ions
removal by ion exchange in batch conical air spouted bed,
Alexandria Eng. J., 54 (2015) 83–90.
- A.A. Ismail, R.M. Mohamed, I. AIbrahim, G. Kini, B. Koopman,
Synthesis, optimization and characterization of zeolite A and its
ion exchange properties, Colloids Surf. A, 366 (2010) 80–87.
- S.K. Gunatilake, Methods of removing heavy metals from
industrial wastewater, J. Multidiscip. Eng. Sci. Stud., 1 (2015) 12–18.
- X. Chen, G. Huang, J. Wang, Electrochemical reduction/oxidation in the treatment of heavy metal wastewater, J. Metall.
Eng., 2 (2013) 161–164.
- E. Friehs, Y. AlSalka, R. Jonczyk, A. Lavrentieva, A. Jochums,
J.-G. Walter, F. Stahl, T. Scheper, D. Bahnemann, Toxicity,
phototoxicity and biocidal activity of nanoparticles employed
in photocatalysis, J. Photochem. Photobiol. C, 29 (2016) 1–28.
- A. Ren, C. Liu, Y. Hong, W. Shi, S. Lin, P. Li, Enhanced visiblelight-
driven photocatalytic activity for antibiotic degradation
using magnetic NiFe2O4/Bi2O3 heterostructures, Chem. Eng. J.,
258 (2014) 301–308.
- H.Y. Zhu, R. Jiang, S.H. Huang, J. Yao, F.Q. Fu, J.B. Li,
Novel magnetic NiFe2O4/multi-walled carbon nanotubes
hybrids: facile synthesis, characterization, and application
to the treatment of dyeing wastewater, Ceram. Int., 41 (2015)
11625–11631.
- T. Peng, X. Zhang, H. Lv, L. Zan, Preparation of NiFe2O4
nanoparticles and its visible-light-driven photoactivity for
hydrogen production, Catal. Commun., 28 (2012) 116–119.
- S.V. Bhosale, N.S. Kanhe, S.V. Bhoraskar, S.K. Bhat, R.N.
Bulakhe, J.J. Shim, V.L. Mathe, Micro-structural analysis of
NiFe2O4 nanoparticles synthesized by thermal plasma route
and its suitability for BSA adsorption, J. Mater. Sci., 26 (2015)
216–230.
- Q. Chen, Y. Zhang, D. Zhang, Y. Yang, Ag and N co-doped
TiO2 nanostructured photocatalyst for printing and dyeing
wastewater, J. Water Process Eng., 16 (2017) 14–20.
- Y. Deng, J.D. Englehardt, Treatment of landfill leachate by the
Fenton process, Water Res., 40 (2006) 3683–3694.
- A.Z. Gotvajn, J. Zagorc-Koncan, M. Cotman, Fenton’s oxidative
treatment of municipal landfill leachate as an alternative to
biological process, Desalination, 275 (2011) 269–275.
- E. Kattel, M. Trapido, N. Dulova, Treatment of landfill leachate
by continuously reused ferric oxyhydroxide sludge-activated
hydrogen peroxide, Chem. Eng. J., 304 (2016) 646–654.
- S. Cortez, P. Teixeira, R. Oliveira, M. Mota, Evaluation of Fenton
and ozone-based advanced oxidation processes as mature
landfill leachate pre-treatments, J. Environ. Manage., 92 (2011)
749–755.
- S. Malato, P. Fernández-Ibánez, M.I. Maldonado, J. Blanco, W.
Gernjak, Decontamination and disinfection of water by solar
photocatalysis: recent overview and trends, Catal. Today, 147
(2009) 1–59.
- J.-A. Park, H.-L. Nam, J.-W. Choi, J. Ha, S.-H. Lee, Oxidation
of geosmin and 2-methylisoborneol by the photo-Fenton
process: kinetics, degradation intermediates, and the removal
of microcystin-LR and trihalomethane from Nak-Dong River
water, South Korea, Chem. Eng. J., 313 (2017) 345–354.
- Z. Ai, L. Lu, J. Li, L. Zhang, J. Qiu, M. Wu, Fe@Fe2O3 core-shell
nanowires as iron reagent. 2. An efficient and reusable sonofenton
system working at neutral pH, J. Phys. Chem. C, 111
(2007) 7430–7436.
- J. Yu, X. Yu, B. Huang, X. Zhang, Y. Dai, Hydrothermal synthesis
and visible-light photocatalytic activity of novel cage-like ferric
oxide hollow spheres, Cryst. Growth Des., 9 (2009) 1474–1480.
- N. Chen, G. Fang, D. Zhou, J. Gao, Effects of clay minerals
on diethyl phthalate degradation in Fenton reactions,
Chemosphere, 165 (2016) 52–58.
- K. Tezuka, M. Kogure, Y.J. Shan, Photocatalytic degradation
of acetic acid on spinel ferrites MFe2O4 (M = Mg, Zn, and Cd),
Catal. Commun., 48 (2014) 11–14.
- H.W. Nesbitt, D. Legrand, G.M. Bancroft, Interpretation of Ni2p
XPS spectra of Ni conductors and Ni insulators, Phys. Chem.
Miner., 27 (2000) 357–366.
- D. Chen, F. Zhang, Q. Li, W. Wang, G. Qian, Y. Jin, Z. Xu, A
promising synergistic effect of nickel ferrite loaded on the layered
double hydroxide-derived carrier for enhanced photocatalytic
hydrogen evolution, Int. J. Hydrogen Energy, 42 (2017) 867–875.
- S.-Q. Liu, B. Xiao, L.-R. Feng, S.-S. Zhou, Z.-G. Chen, C.-B. Liu,
F. Chen, Z.-Y. Wu, N. Xu, W.-C. Oh, Z.-D. Meng, Graphene
oxide enhances the Fenton-like photocatalytic activity of nickel
ferrite for degradation of dyes under visible light irradiation,
Carbon, 64 (2013) 197–206.
- T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+
ions oxide materials, Appl. Surf. Sci., 254 (2008) 2441–2449.