References

  1. J.W. Yang, A study on the behavior of water quality using density current generator (DCG) in a lake – focused on DO, temperature, salinity, J. Korean Soc. Urban Environ., 11 (2011) 49–55.
  2. B.M. Ki, A study on the effects of the nutrient release from sediments in the reservoir, J. Korean Soc. Environ. Eng., 33 (2011) 553–563.
  3. Y. Liu, Q. Cheng, B. Zhang, F. Tian, Three-phase hydrocyclone separator: a review, Chem. Eng. Res. Des., 100 (2015) 554–560.
  4. J.R. Radman, R. Langlois, T. Leadbeater, J. Finch, N. Rowson, K. Waters, Particle flow visualization in quartz slurry inside a hydrocyclone using the positron emission particle tracking technique, Miner. Eng., 62 (2014) 142–145.
  5. R.K.L. Yap, M. Whittaker, M. Diao, R.M. Stuetz, B. Jefferson, V. Bulmus, W.L. Peirson, A.V. Nguyen, R.K. Henderson, Hydrophobically-associating cationic polymers as micro-bubble surface modifiers in dissolved air flotation for cyanobacteria cell separation, Water Res., 61 (2014) 253–262.
  6. J. Haarhoff, K. Edzwald, Adapting dissolved air flotation for the clarification of seawater, Desalination, 311 (2013) 90–94.
  7. J. Gasperi, B. Laborie, V. Rocher, Treatment of combined sewer overflows by ballasted flocculation: removal study of a large broad spectrum of pollutants, Chem. Eng. J., 211–212 (2012) 293–301.
  8. P. Jarvis, P. Buckingham, B. Holden, B. Jefferson, Low energy ballasted flotation, Water Res., 43 (2009) 3427–3434.
  9. C. Bhondayi, M.H. Moys, D. Fanucchi, G. Danha, Numerical and experimental study of the effect of a froth baffle on flotation cell performance, Miner. Eng., 77 (2015) 107–116.
  10. M. Bondelind, S. Sasic, M. Kostoglou, L. Bergdahl, T.J. Pettersson, Single- and two-phase numerical models of dissolved air flotation: comparison of 2D and 3D simulations, Colloids Surf., A, 365 (2010) 137–144.
  11. G.N. Ryu, S.M. Park, H.I. Lee, M.K. Chung, Numerical study of effect of DAF-tank shape on flow pattern in separation zone of dissolved air flotation, Trans. Korean Soc. Mech. Eng. B, 35 (2011) 855–860.
  12. M.Y. Han, Y.H. Park, J. Lee, J.S. Shim, Effect of pressure on bubble size in dissolved air flotation, Water Sci. Technol., 2 (2002) 41–46.
  13. M.R. Park, M.Y. Han, Evaluation of design parameters on microbubble generating device for control of bubble size, J. Korean Soc. Environ. Eng., 1 (2012) 242–243.
  14. S.C. Park, H.Y. Oh, M.K. Chung, S.L. Song, Y.H. Ahn, An effect of the micro bubble formation depending on the saturator and the nozzle in the dissolved air flotation system, J. Korean Soc. Environ. Eng., 35 (2013) 929–936.
  15. B. Lakghomi, Y. Lawryshyn, R. Hofmann, A model of particle removal in a dissolved air flotation tank: importance of stratified flow and bubble size, Water Res., 68 (2015) 262–272.
  16. A. Wang, X. Yan, L. Wang, Y. Cao, J. Liu, Effect of cone angles on single-phase flow of a laboratory cyclonic-static micro-bubble flotation column: PIV measurement and CFD simulations, Sep. Purif. Technol., 149 (2015) 308–314.
  17. A.M. Goula, M. Kostoglou, T.D. Karapantsios, A.I. Zouboulis, A CFD methodology for the design of sedimentation tanks in potable water treatment. Case study: the influence of a feed flow control baffle, Chem. Eng. J., 140 (2008) 110–121.
  18. S.I. Oh, An Experimental Study on the Generation of Micro- Bubble Using Orifice Nozzle and the Flow Pattern of Bubbles in a DAF, M.S. Dissertation, Kumoh National Institute of Technology, Gumi, Korea, 2015.
  19. M. Lundh, L. Jonsson, J. Dahlquist, The influence of contact zone configuration on the flow structure in an dissolved air flotation pilot plant, Water Res., 36 (2002) 1585–1598.
  20. M. Lundh, L. Jonsson, J. Dahlquist, Experiment studies of the fluid dynamics in the separation zone in dissolved air flotation, Water Res., 34 (2000) 21–30.
  21. G.N. Ryu, S.M. Park, H.I. Lee, M.K. Chung, Numerical study of the effect DAF-tank shape on the flow pattern in the separation, Trans. Korean Soc. Mech. Eng. B, 35 (2010) 855–860.