References

  1. D. Krewski, R.A. Yoke, E. Nieboer, D. Borchelt, J. Cohen, J. Harry, S. Kacew, J. Lindsay, A.M. Mahfouz, V. Virginie Rondeau, Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide, J. Toxicol. Environ. Health B Crit. Rev., 10 (2007) 1–269.
  2. E.T. Gjessing, J. Alexander, B.O. Rosseland, Acidification and Aluminum - Contamination of Drinking Water, Watershed 89: The Future for Water Quality in Europe, 1 (1990) 15–21.
  3. M.R. Jekel, Aluminum in Water: How It can be Removed? Use of Aluminum Salts in Treatment, Proc. Int. Water Supply Ass., Copenhagen, Denmark, 1991, pp. 25–31.
  4. A.M. Abdullah, Aluminum pollution removal from water using a natural zeolite, J. Pollut. Effects Control, 2 (2014) 2–5.
  5. K. Davis, Material Review: Alumina (Al2O3), School of Doctoral Studies (European Union), Belgium, 2010.
  6. P.T. Srinivisan, T. Viraraghavan, K.S. Subramanian, Aluminum in drinking water: an overview, Water SA., 25 (1999) 47–56.
  7. G. Macchi, M. Pagano, M. Santori, G. Tiravanti, Battery industry wastewater: Pb removal and produced sludge, Water Res., 27 (1993) 1511–1518.
  8. D. Marani, G. Macchi, M. Pagano, Lead precipitation in the presence of sulphate and carbonate: testing of thermodynamic predictions, Water Res., 29 (1995) 1085–1092.
  9. G. Macchi, D. Marani, M. Pagano, G. Bagnuolo, A bench study on lead removal from battery manufacturing wastewater by carbonate precipitation, Water Res., 30 (1996) 3032–3036.
  10. J.P. Chen, H. Yu, Lead removal from synthetic wastewater by crystallization in a fluidized-bed reactor, J. Environ. Sci. Heal. A, 35 (2000) 817–835.
  11. C.S. Chen, Y.J. Shih, Y.H. Huang, Remediation of lead (Pb(II)) wastewater through recovery of lead carbonate in a fluidizedbed homogeneous crystallization (FBHC) system, Chem/Eng. J., 279 (2015) 120–128.
  12. R. Aldaco, A. Garea, A. Irabien, Calcium fluoride recovery from fluoride wastewater in a fluidized bed reactor, Water Res., 41 (2007) 810–818.
  13. R. Aldaco, A. Garea, A. Irabien, Particle growth kinetics of calcium fluoride in a fluidized bed reactor, Chem. Eng. Sci., 62 (2007) 2958–2966.
  14. C.P. Huang, J.R. Pan, M.S. Lee, S.M. Yen, Treatment of high-level arsenic-containing wastewater by fluidized bed crystallization process, J. Chem. Technol. Biotechnol., 82 (2007) 289–294.
  15. N. Boonrattanakij, M.C. Lu, J. Anotai, Iron crystallization in a fluidized-bed Fenton process, Water Res., 45 (2011) 3255–3262.
  16. C.C. Su, C.M. Chen, J. Anotai, M.C. Lu, Removal of monoethanolamine and phosphate from thin-film transistor liquid crystal display (TFT-LCD) wastewater by the fluidized bed Fenton process, Chem. Eng. J., 222 (2013) 128–135.
  17. C. Su, L. Dulfo, M. Dalida, M-C Lu, Magnesium phosphate crystallizationin a fluidized-bed reactor: effects of pH, Mg:P molar ratio and seed. Sep. Purif. Technol., 125 (2014) 90–96.
  18. M.S. Rahaman, D.S. Mavinic, A. Meikleham, N. Ellis, Modeling phosphorus removal and recovery from anaerobic digester supernatant through struvite crystallization in a fluidized-bed reactor, Water Res., 51 (2014) 1–10.
  19. A.E. Nielsen, Electrolyte crystal growth kinetics, J. Cryst. Growth, 67 (1984) 278–288.
  20. A.S. Myerson, Handbook of Industrial Crystallization, 2nd ed., Butterworth-Heinemann, 2002.
  21. R. Aldaco, A. Garea, A. Irabien, Modeling of particle growth: application to water treatment in a fluidized bed reactor, Chem. Eng. J., 134 (2007) 66–71.
  22. M.I.H. Bhuiyan, D.S. Mavinic, R.D. Beckie, Nucleation and growth kinetics of struvite in a fluidized bed reactor, J. Crystal Grow., 310 (2008) 1187–1194.
  23. J.D. Hem, C.E. Roberson, Form and Stability of Aluminum Hydroxide Complexes in Dilute Solution, U.S. Geol. Survey Water-Supply Paper I827-A, United States Government Printing Office, Washington, 1967, pp. 55.
  24. W.Q. Cai, H.Q. Li, Y. Zhang, Influences of processing techniques of the H2O2 precipitated pseudoboehmite on the structural and textural properties of γ-Al2O3, Colloid Surf. A, 295 (2007) 185–192.
  25. E.A. El-Katatny, S.A. Halawy, M.A. Mohamed, M. Zaki, A novel synthesis of high-area alumina via H2O2-precipitated boehmite from sodium aluminate solutions, J. Chem. Technol. Biotechnol., 72 (1998) 320–328.
  26. Y.L. Xie, S.W. Bi, Y.H. Yang, Z. Wang, Research on structure of sodium aluminate solution in alumina production, Nonferrous Metals, 53 (2001) 59–61.
  27. S. Marciano, N. Mugnier, P. Clerin, B. Cristol, P. Moulin, Nanofiltration of Bayer process solutions, J. Membr. Sci., 281 (2006) 260–267.
  28. G.C. Kennedy, Phase relations in the system Al2O3-H2O at high temperatures and pressures, Am. J. Sci., 247 (1959) 563–573.
  29. K. Wefers, C. Misra, Oxides and Hydroxides of Aluminum, Alcoa Tech. Paper No. 19, Aluminum Company of America, Revised, 1987.
  30. K.H. Gayer, L.Thompson, O.T. Zajicek, The solubility of aluminum hydroxide in acidic and basic media at 25°C, Canadian J. Chem., 36 (1958) 1268–1271.
  31. R.W. Smith, J.D. Hem, Effect of Aging of Aluminum Hydroxide Complexes in Dilute Solutions, Chemistry of Aluminum in Natural Water, United States Government Printing Office, Washington, 1972.
  32. J. Chung, E. Jeong, J.W. Choi, S.T. Yun, S.K. Maeng, S.W. Hong, Factors affecting crystallization of copper sulfide in fed-batch fluidized bed reactor, Hydrometallurgy, 152 (2015) 107–112.
  33. G.V. Franks, Y. Gan, Charging behavior at the alumina–water interface and implications for ceramic processing, J. Am. Ceram. Soc., 90 (2007) 3373–3388.
  34. D.A. Sverjensky, Zero-point-of-charge prediction from crystal chemistry and salvation theory, Geochim. Cosmochim. Acta, 58 (1994) 3123–3129.
  35. C.Y. Tai, W.C. Chien, C.Y. Chen, Crystal growth kinetics of calcite in a dense fluidized bed crystallizer, AIChE J., 45 (1999) 1605–1614.
  36. J.M. Kim, S.M. Chang, J.H. Chang, W.S. Kim, Agglomeration of nickel/cobalt/ manganese hydroxide crystals in Couette–Taylor crystallizer, Colloid. Surf. A, , 384 (2011) 3–39.
  37. Y. Shimizu, I. Hirasawa, Effect of seeding on metal ion recovery from wastewater by reactive crystallization of metal carbonates, Chem. Eng. Technol., 35 (2012) 1588–1592.