References

  1. H. Guo, Y. Wyart, J. Perot, F. Nauleau, P. Moulin, Low-pressure membrane integrity tests for drinking water treatment: a review, Water Res., 44 (2010) 41–57.
  2. C. Ma, S. Yu, W. Shi, W. Tian, S.G.J. Heijman, L.C. Rietveld, High concentration powdered activated carbon-membrane bioreactor (PAC-MBR) for slightly polluted surface water treatment at low temperature, Bioresour. Technol., 113 (2012) 136–142.
  3. C. Ma, S. Yu, W. Shi, S.G.J. Heijman, L.C. Rietveld, Effect of different temperatures on performance and membrane fouling in high concentration PAC-MBR system treating micro-polluted surface water, Bioresour. Technol., 141 (2013) 19–24.
  4. Q. Li, Z.Q. Yan, X.L. Wang, A poly(sulfobetaine) hollow fiber ultrafiltration membrane for the treatment of oily wastewater, Desal. Wat. Treat., 57 (2016) 11048–11065.
  5. M. Yao, J. Nan, Q. Li, D. Zhan, T. Chen, Z. Wang, H. Li, Effect of under-dosing coagulant on coagulation-ultrafiltration process for treatment of humic-rich water with divalent calcium ion, J. Membr. Sci., 495 (2015) 37–47.
  6. G. Masmoudi, E. Ellouze, R. Ben Amar, Hybrid coagulation/ membrane process treatment applied to the treatment of industrial dyeing effluent, Desal. Wat. Treat., 57 (2016) 6781–6791.
  7. Y. Wang, N. Xue, Y. Chu, Y. Sun, H. Yan, Q. Han, CuO nanoparticle-humic acid (CuONP-HA) composite contaminant removal by coagulation/ultrafiltration process: the application of sodium alginate as coagulant aid, Desalination, 367 (2015) 265–271.
  8. P. Xie, Y. Chen, J. Ma, X. Zhang, J. Zou, Z. Wang, A mini review of preoxidation to improve coagulation, Chemosphere, 155 (2016) 550–563.
  9. Y. Bao, J. Niu, Z. Xu, D. Gao, J. Shi, X. Sun, Q. Huang, Removal of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from water by coagulation: mechanisms and influencing factors, J. Colloid Interface Sci., 434 (2014) 59–64.
  10. X. Guan, Y. Sun, H. Qin, J. Li, I.M.C. Lo, D. He, H. Dong, The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994–2014), Water Res., 75 (2015) 224–248.
  11. B. Calderon, A. Fullana, Heavy metal release due to aging effect during zero valent iron nanoparticles remediation, Water Res., 83 (2015) 1–9.
  12. F. Fu, D.D. Dionysiou, H. Liu, The use of zero-valent iron for groundwater remediation and wastewater treatment: a review, J. Hazard. Mater., 267 (2014) 194–205.
  13. L. Zhang, L. Zhang, D. Li, Enhanced dark fermentative hydrogen production by zero-valent iron activated carbon microelectrolysis, Int. J. Hydrogen Energy, 40 (2015) 12201–12208.
  14. J. Luo, G. Song, J. Liu, G. Qian, Z.P. Xu, Mechanism of enhanced nitrate reduction via micro-electrolysis at the powdered zerovalent iron/activated carbon interface, J. Colloid Interface Sci., 435 (2014) 21–25.
  15. Z.J. Li, L. Wang, L.Y. Yuan, C.L. Xiao, L. Mei, L.R. Zheng, J. Zhang, J.H. Yang, Y.L. Zhao, Z.T. Zhu, Z.F. Chai, W.Q. Shi, Efficient removal of uranium from aqueous solution by zerovalent iron nanoparticle and its graphene composite, J. Hazard. Mater., 290 (2015) 26–33.
  16. W. Yu, N. Graham, Y. Yang, Z. Zhou, L.C. Campos, Effect of sludge retention on UF membrane fouling: the significance of sludge crystallization and EPS increase, Water Res., 83 (2015) 319–328.
  17. L.Y. Wong, C.A. Ng, M.J.K. Bashir, C.K. Cheah, K.L. Khoo, Y.C. Ching, Membrane bioreactor performance improvement by adding adsorbent and coagulant: a comparative study, Desal. Wat. Treat., 57 (2016) 13433–13439.
  18. Y. Feng, Y. Zhang, X. Quan, S. Chen, Enhanced anaerobic digestion of waste activated sludge digestion by the addition of zero valent iron, Water Res., 52 (2014) 242–250.
  19. J.C. Lee, J.S. Kim, I.J. Kang, M.H. Cho, P.K. Park, C.H. Lee, Potential and limitations of alum or zeolite addition to improve the performance of a submerged membrane bioreactor, Water Sci. Technol., 43 (2001) 59–66.
  20. P. Loulergue, M. Weckert, B. Reboul, C. Cabassud, W. Uhl, C. Guigui, Mechanisms of action of particles used for fouling mitigation in membrane bioreactors, Water Res., 66 (2014) 40–52.
  21. B. Teychene, C. Guigui, C. Cabassud, Engineering of an MBR supernatant fouling layer by fine particles addition: a possible way to control cake compressibility, Water Res., 45 (2011) 2060–2072.
  22. S. Jamal Khan, C. Visvanathan, V. Jegatheesan, Effect of powdered activated carbon (PAC) and cationic polymer on biofouling mitigation in hybrid MBRs, Bioresour. Technol., 113 (2012) 165–168.
  23. J. Wang, J. Yang, H. Zhang, W. Guo, H.H. Ngo, Feasibility study on magnetic enhanced flocculation for mitigating membrane fouling, J. Ind. Eng. Chem., 26 (2015) 37–45.
  24. P.K. Park, C.H. Lee, S. Lee, Determination of cake porosity using image analysis in a coagulation-microfiltration system, J. Membr. Sci., 293 (2007) 66–72.
  25. L. Ehrl, M. Soos, M. Morbidelli, Dependence of aggregate strength, structure, and light scattering properties on primary particle size under turbulent conditions in stirred tank, Langmuir, 24 (2008) 3070–3081.
  26. S. Kim, H. Park, Effective diameter for shear-induced diffusion for characterizing cake formation in crossflow microfiltration at polydisperse conditions, J. Environ. Eng., 131 (2005) 865–873.
  27. J.T. Nurmi, P.G. Tratnyek, V. Sarathy, D.R. Baer, J.E. Amonette, K. Pecher, C. Wang, J.C. Linehan, D.W. Matson, R.L. Penn, M.D. Driessen, Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics, Environ. Sci. Technol., 39 (2005) 1221–1230.
  28. S.R. Kanel, B. Manning, L. Charlet, H. Choi, Removal of arsenic(III) from groundwater by nanoscale zero-valent iron, Environ. Sci. Technol., 39 (2005) 1291–1298.
  29. A. Khan, S.M. Prabhu, J. Park, W. Lee, C.M. Chon, J.S. Ahn, G. Lee, Azo dye decolorization by ZVI under circum-neutral pH conditions and the characterization of ZVI corrosion products, J. Ind. Eng. Chem., 47 (2017) 86–93.
  30. Z. Yang, C. Shan, W. Zhang, Z. Jiang, X. Guan, B. Pan, Temporospatial evolution and removal mechanisms of As(V) and Se(VI) in ZVI column with H2O2 as corrosion accelerator, Water Res., 106 (2016) 461–469.
  31. S.M. Ponder, J.G. Darab, T.E. Mallouk, Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zerovalent iron, Environ. Sci. Technol., 34 (2000) 2564–2569.
  32. M.J. Alowitz, M.M. Scherer, Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal, Environ. Sci. Technol., 36 (2002) 299–306.
  33. A.D. Bokare, W. Choi, Zero-valent aluminum for oxidative degradation of aqueous organic pollutants, Environ. Sci. Technol., 43 (2009) 7130–7135.
  34. L. Liang, W. Sun, X. Guan, Y. Huang, W. Choi, H. Bao, L. Li, Z. Jiang, Weak magnetic field significantly enhances selenite removal kinetics by zero valent iron, Water Res., 49 (2014) 371–380.
  35. W. Chen, P. Westerhoff, J.A. Leenheer, K. Booksh, Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter, Environ. Sci. Technol., 37 (2003) 5701–5710.
  36. H. Yamamura, K. Okimoto, K. Kimura, Y. Watanabe, Hydrophilic fraction of natural organic matter causing irreversible fouling of microfiltration and ultrafiltration membranes, Water Res., 54 (2014) 123–136.
  37. Z. Liu, B.Z. Dong, Y. Chen, H. Liu, Characterization of membrane fouling by three-dimension fluorescence excitation, Environ. Chem., 29 (2010) 496–501.
  38. M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers, London, UK, 1991.
  39. K.J. Howe, A. Marwah, K.P. Chiu, S.S. Adham, Effect of coagulation on the size of MF and UF membrane foulants, Environ. Sci. Technol., 40 (2006) 7908–7913.
  40. X. Wang, L. Wang, Y. Liu, W. Duan, Ozonation pretreatment for ultrafiltration of the secondary effluent, J. Membr. Sci., 287 (2007) 187–191.
  41. H. Huang, R. Spinette, C.R. O’Melia, Direct-flow microfiltration of aquasols. I. Impacts of particle stabilities and size, J. Membr. Sci., 314 (2008) 90–100.
  42. H. Hong, M. Zhang, Y. He, J. Chen, H. Lin, Fouling mechanisms of gel layer in a submerged membrane bioreactor, Bioresour. Technol., 166 (2014) 295–302.
  43. J. Chen, M. Zhang, F. Li, L. Qian, H. Lin, L. Yang, X. Wu, X. Zhou, Y. He, B.Q. Liao, Membrane fouling in a membrane bioreactor: high filtration resistance of gel layer and its underlying mechanism, Water Res., 102 (2016) 82–89.
  44. L. Zhao, F. Wang, X. Weng, R. Li, X. Zhou, H. Lin, H. Yu, B.Q. Liao, Novel indicators for thermodynamic prediction of interfacial interactions related with adhesive fouling in a membrane bioreactor, J. Colloid Interface Sci., 487 (2017) 320–329.