References

  1. T.Y. Cath, A.E. Childress, M. Elimelech, Forward osmosis: principles, applications, and recent developments, J. Membr. Sci., 281 (2006) 70–87.
  2. J.R. McCutcheon, M. Elimelech, Modeling water flux in forward osmosis: implications for improved membrane design, AIChE J., 53 (2007) 1736–1744.
  3. J.R. McCutcheon, M. Elimelech, Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis, J. Membr. Sci., 284 (2006) 237–247.
  4. M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment, Science, 333 (2011) 712–717.
  5. B. Mi, M. Elimelech, Organic fouling of forward osmosis membranes: fouling reversibility and cleaning without chemical reagents, J. Membr. Sci., 348 (2010) 337–345.
  6. Y.-J. Choi, J.-S. Choi, H.-J. Oh, S. Lee, D.R. Yang, J.H. Kim, Toward a combined system of forward osmosis and reverse osmosis for seawater desalination, Desalination, 247 (2009) 239–246.
  7. J. Jeon, B. Park, Y. Yoon, S. Kim, An optimal design of forward osmosis and reverse osmosis hybrid process for seawater desalination, Desal. Wat. Treat., 57 (2016) 26612–26620.
  8. S.H. Park, B. Park, H.K. Shon, S. Kim, Modeling full-scale osmotic membrane bioreactor systems with high sludge retention and low salt concentration factor for wastewater reclamation, Bioresour. Technol., 190 (2015) 508–515.
  9. S. Kim, Scale-up of osmotic membrane bioreactors by modelling salt accumulation and draw solution dilution using hollow-fiber membrane characteristics and operation conditions, Bioresour. Technol., 165 (2014) 88–95.
  10. S. Kim, S. Paudel, G.T. Seo, Forward osmosis membrane filtration for microalgae harvesting cultivated in sewage effluent, Environ. Eng. Res., 20 (2015) 99–104.
  11. S. Zhao, L. Zou, C.Y. Tang, D. Mulcahy, Recent developments in forward osmosis: opportunities and challenges, J. Membr. Sci., 396 (2012) 1–21.
  12. S. Zou, Y. Gu, D. Xiao, C.Y. Tang, The role of physical and chemical parameters on forward osmosis membrane fouling during algae separation, J. Membr. Sci., 366 (2011) 356–362.
  13. F. Lotfi, S. Phuntsho, T. Majeed, K. Kim, D.S. Han, A.A.-Wahab, H.K. Shon, Thin film composite hollow fibre forward osmosis membrane module desalination of brackish groundwater for fertigation, Desalination, 364 (2015) 108–118.
  14. J. Lee, S. Kim, Predicting power density of pressure retarded osmosis (PRO) membranes using a new characterization method based on a single PRO test, Desalination, 389 (2016) 224–234.
  15. R. Wang, L. Shi, C.Y.Y. Tang, S.R. Chou, C. Qiu, A.G. Fane, Characterization of novel forward osmosis hollow fiber membranes, J. Membr. Sci., 355 (2010) 158–167.
  16. G.T. Gray, J.R. McCutcheon, M. Elimelech, Internal concentration polarization in forward osmosis: role of membrane orientation, Desalination, 197 (2006) 1–8.
  17. J. Lee, J.Y. Choi, J.-S. Choi, K.H. Chu, Y. Yoon, S. Kim, A statisticsbased forward osmosis membrane characterization method without pressurized reverse osmosis experiment, Desalination, 403 (2017) 36–45.
  18. J. Jeon, J. Jung, J.Y. Choi, S. Kim, The performance of the spiral wound and flat sheet forward osmosis elements with thin film composite membrane, Desal. Wat. Treat. (in press).
  19. J.E. Kim, S. Phuntsho, F. Lotfi, H.K. Shon, Investigation of pilotscale 8040 FO membrane module under different operating conditions for brackish water desalination, Desal. Wat. Treat., 53 (2015) 2782–2791.
  20. D. Attarde, M. Jain, S.K. Gupta, Modeling of a forward osmosis and a pressure-retarded osmosis spiral wound module using the Spiegler-Kedem model and experimental validation, Sep. Purif. Technol., 164 (2016) 182–197.
  21. D. Attarde, M. Jain, K. Chaudhary, S.K. Gupta, Osmotically driven membrane processes by using a spiral wound module – modeling, experimentation and numerical parameter estimation, Desalination, 361 (2015) 81–94.
  22. M. Shibuya, M. Yasukawa, S. Goda, H. Sakurai, T. Takahashi, M. Higa, H. Matsuyama, Experimental and theoretical study of a forward osmosis hollow fiber membrane module with a crosswound configuration, J. Membr. Sci., 504 (2016) 10–19.
  23. J.E. Kim, G. Blandin, S. Phuntsho, A. Verliefde, P. Le-Clech, H.K. Shon, Practical considerations for operability of an 8" spiral wound forward osmosis module: hydrodynamics, fouling behaviour and cleaning strategy, Desalination, 404 (2017) 249–258.
  24. Y.C. Kim, S.J. Park, Experimental study of a 4040 spiral-wound forward-osmosis membrane module, Environ. Sci. Technol., 45 (2011) 7737–7745.
  25. R.L. McGinnis, N.T. Hancock, M.S. Nowosielski-Slepowron, G.D. McGurgan, Pilot demonstration of the NH3/CO2 forward osmosis desalination process on high salinity brines, Desalination, 312 (2012) 67–74.
  26. J. Schwinge, P.R. Neal, D.E. Wiley, D.F. Fletcher, A.G. Fane, Spiral wound modules and spacers: review and analysis, J. Membr. Sci., 242 (2004) 129–153.
  27. G. Blandin, A.R. Verliefde, P. Le-Clech, Pressure enhanced fouling and adapted antifouling strategy in pressure assisted osmosis (PAO), J. Membr. Sci., 493 (2015) 557–567.
  28. G. Blandin, A.R.D. Verliefde, C.Y. Tang, A.E. Childress, P. Le-Clech, Validation of assisted forward osmosis (AFO) process: impact of hydraulic pressure, J. Membr. Sci., 447 (2013) 1–11.
  29. S. Sahebi, S. Phuntsho, J.E. Kim, S. Hong, H.K. Shon, Pressure assisted fertiliser drawn osmosis process to enhance final dilution of the fertiliser draw solution beyond osmotic equilibrium, J. Membr. Sci., 481 (2015) 63–72.
  30. J. Duan, E. Litwiller, I. Pinnau, Solution-diffusion with defects model for pressure assisted forward osmosis, J. Membr. Sci., 470 (2014) 323–333.
  31. S. Jamil, S. Jeong, S. Vigneswara, Application of pressure assisted forward osmosis for water purification and reuse of reverse osmosis concentrate from a water reclamation plant, Sep. Purif. Technol., 171 (2016) 182–192.
  32. Y. Oh, S. Lee, M. Elimelech, S. Lee, S. Hong, Effect of hydraulic pressure and membrane orientation on water flux and reverse solute flux in pressure assisted osmosis, J. Membr. Sci., 465 (2014) 159–166.