References
- M.J. Qu, Z.J. Han, X.J. Xu, L.N. Yue, Triazophos resistance
mechanisms in the rice stem borer (Chilo suppressalis Walker),
Pestic. Biochem. Physiol., 77 (2013) 99–105.
- H. Peter, S. Wood, Drivers of change in global agriculture,
Philos. Trans. R. Soc. London, Ser. B, 363 (2008) 495–515.
- B.Y. Chen, S.Y. Zhen, X.C. Niu, J.S. Zhao, Species sensitive
distribution for aquatic biota exposed to triazophos, J. Environ.
Sci., 32 (2011) 1101–1107.
- K.J. Ju, J.X. Feng, J.J. Feng, Q.L. Zhang, T.Q. Xu, J. Wei, A.J.
Wang, Biosensor for pesticide triazophos based on its inhibition
of acetylcholinesterase and using a glassy carbon electrode
modified with coral-like gold nanostructure supported on
reduced graphene oxide, Microchim. Acta, 182 (2015) 2427–2434.
- C. Namasivayam, R.T. Yamuna, D.J.S.E. Arasi, Removal of
acid violet from wastewater by adsorption on waste red mud,
Environ. Geol., 41 (2001) 269–273.
- P.K. Kanaujia, D. Pardasani, A.K. Purohit, V. Tank, D.K. Dubey,
Polyelectrolyte functionalized multi-walled carbon nanotubes
as strong anion-exchange material for the extraction of acidic
degradation products of nerve agents, J. Chromatogr. A, 1218
(2011) 9307.
- R.W. Gillham, S.F. O’Hannesin, Enhanced degradation of
halogenated aliphatics by zero-valent iron, Ground Water, 32
(1994) 958–967.
- K.V. Schoutteten, T. Hennebel, E. Dheere, Effect of oxidation
and catalytic reduction of trace organic contaminants on their
activated carbon adsorption, Chemosphere, 165 (2016) 191–201.
- O.G. Apul, Q. Wang, Y. Zhou, T. Karanfil, Adsorption of
aromatic organic contaminants by graphene nanosheets:
comparison with carbon nanotubes and activated carbon, Water
Res., 47 (2013) 1648–1654.
- M. Kim, K.J. Wan, Purification of aromatic hydrocarbons using
Ag–multiwall carbon nanotube–ZnO nanocomposites with
high performance, J. Ind. Eng. Chem., 47 (2016) 94–101.
- C. Lu, Y.L. Chung, K.F. Chang, Adsorption of trihalomethanes
from water with carbon nanotubes, Water Res., 39 (2005)
1183–1189.
- V. Sabna, S.G. Thampi, S. Chandrakaran, Adsorption of crystal
violet onto functionalised multi-walled carbon nanotubes:
equilibrium and kinetic studies, Ecotoxicol. Environ. Saf., 134
(2015) 390–397.
- J.X. Wu, H. Xu, J. Zhang, Raman spectroscopy of graphene, J.
Chin. Chem. Soc., 72 (2014) 301–318.
- L.J. Zhu, W. Zhang, J.C. Zhang, D.X. Zai, R. Zhao,
Thermodynamics adsorption and its influencing factors of
chlorpyrifos and triazophos on the bentonite and humus, J.
Environ. Sci., 31 (2010) 2699–2704.
- S.J. Zhang, T. Shao, S.S.K. Bekaroglu, T.J. Karanfil, Adsorption
of synthetic organic chemicals by carbon nanotubes: effects of
background solution chemistry, Water Res., 44 (2010) 2067.
- C.Y. Cui, Q.Z. Zheng, W.F. Yang, Adsorption properties of Cr3+
on multiwall carbon nanotubes modified by different chemical
methods, J. Environ. Eng., 6 (2012) 3975–3980.
- T. Aungpradit, P. Sutthivaiyakit, D. Martens, S. Sutthivaiyakit,
A.A. Kettrup, Photocatalytic degradation of triazophos
in aqueous titanium dioxide suspension: identification of
intermediates and degradation pathways, J. Hazard. Mater., 146
(2007) 204–213.
- J. Lee, S. Jeong, Y. Ye, V. Chen, S. Vigneswaran, Protein fouling
in carbon nanotubes enhanced ultrafiltration membrane:
fouling mechanism as a function of pH and ionic strength, Sep.
Purif. Technol., 176 (2017) 323–334.
- G. Vakili-Nezhaad, M. Al-Wadhahi, A.M. Gujrathi, R.
Al-Maamari, M. Mohammadi, Effect of temperature and
diameter of narrow single-walled carbon nanotubes on the
viscosity of nanofluid: a molecular dynamics study, Fluid Phase
Equilib., 434 (2017) 193–199.
- G. Gürboğa, H. Tel, Preparation of TiO2-SiO2 mixed gel spheres
for strontium adsorption, J. Hazard. Mater., 120 (2005) 135.
- H.Y. Gao, Z.Z. Song, W.J. Zhang, X.F. Yang, X. Wang, D.S. Wang,
Synthesis of highly effective absorbents with waste quenching
blast furnace slag to remove Methyl Orange from aqueous
solution, J. Environ. Sci., 53 (2017) 68–77.
- J. Yu, F.C. Yang, W.N. Hung, C.L. Liu, M. Yang, T.F. Lin,
Prediction of powdered activated carbon doses for 2-MIB
removal in drinking water treatment using a simplified HSDM
approach, Chemosphere, 156 (2016) 374–382.