References

  1. A. Madani, Economics of desalination for three plant sizes, Desalination, 78 (1990) 187–200.
  2. A. Madani, S.E. Aly, A combined RO/freezing system to reduce inland rejected brine, Desalination, 75 (1989) 241–258.
  3. O. Miyawaki, L. Liu, Y. Shirai, S. Sakashita, K. Kagitani, Tubular ice system for scale-up of progressive freeze-concentration, J. Food Eng., 69 (2005) 107–113.
  4. M.V. Rane, Y.S. Padiya, Heat pump operated freeze concentration system with tubular heat exchanger for seawater desalination, Energy Sustain. Dev., 15 (2011) 184–191.
  5. W. Rice, D.S.C. Chau, Freeze desalination using hydraulic refrigerant compressors, Desalination, 109 (1997) 157–164.
  6. J. Sánchez, E. Hernández, J.M. Auleda, M. Raventós, Freeze concentration of whey in a falling-film based pilot plant: process and characterization, J. Food Eng., 103 (2011) 147–155.
  7. J. Sánchez, Y. Ruiz, M. Raventós, J.M. Auleda, E. Hernández, Progressive freeze concentration of orange juice in a pilot plant falling film, Innov. Food Sci. Emerging Technol., 11 (2010) 644–651.
  8. G.L. Stepakoff, D. Siegelman, R. Johnson, W. Gibson, Development of a eutectic freezing process for brine disposal, Desalination, 15 (1974) 25–38.
  9. W. Gao, D.W. Smith, D.C. Sego, Freezing behavior of freely suspended industrial wastewater droplets, Cold Reg. Sci. Technol., 31 (2000) 13–26.
  10. G. Gay, O. Lorain, A. Azouni, Y. Aurelle, Wastewater treatment by radial freezing with stirring effects, Water Res., 37 (2003) 2520–2524.
  11. W. Gao, M. Habib, D.W. Smith, Removal of organic contaminants and toxicity from industrial effluents using freezing processes, Desalination, 245 (2009) 108–119.
  12. P. Ganorkar, A. Nandane, A. Tapre, Reverse Osmosis for Fruit Juice Concentration – A Review, J. Food Sci. Technol., 1 (2012) 23–36.
  13. X. Cheng, M. Zhang, B. Xu, B. Adhikari, J. Sun, The principles of ultrasound and its application in freezing related processes of food materials, Ultrason. Sonochem., 27 (2015) 576–585.
  14. M.A. Darwish, M. Abdel-Jawad, J. Leif, A new dual-function device for optimal energy recovery and pumping for all capacities of RO systems, Desalination, 75 (1989) 25–39.
  15. H. Mohammed, I. Dore, Forecasting the economic costs of desalination technology, Desalination, 172 (2005) 207–214.
  16. N. Yazdanpanah, A. Myerson, B. Trout, Mathematical modeling of layer crystallization on a cold column with recirculation, Ind. Eng. Chem. Res., 55 (2016) 5019–5029.
  17. APHA, Standard Methods for the Examination of Water and Wastewater, American Public Health Association, American Water Works Association and Water Environment Federation, Washington, D.C., USA, 1998.
  18. L. Vrbka, P. Jungwirth, Brine rejection from freezing salt solutions: a molecular dynamics study, Phys. Rev. Lett., 95 (2005) 148501.
  19. P. Wang, T.S. Chung, A conceptual demonstration of freeze desalination-membrane distillation (FD-MD) hybrid desalination process utilizing liquefied natural gas (LNG) cold energy, Water Res., 46 (2012) 4037–4052.
  20. D. Zhou, L. Zhu, Y. Fu, M. Zhu, L. Xue, Development of lower cost seawater desalination processes using nanofiltration technologies – a review, Desalination, 376 (2015) 109–116.
  21. J. Chang, J. Zuo, K.J. Lu, T.S. Chung, Freeze desalination of seawater using LNG cold energy, Water Res., 102 (2016) 282–293.
  22. R. Singh, Sustainable fuel cell integrated membrane desalination systems, Desalination, 227 (2008) 14–33.
  23. Y. Hui, Z. Zhonglai, Y. Yuexin, Influence of gravity-induced brine drainage on seawater ice desalination, Desalination, 407 (2017) 33–40.
  24. M.A. Darwish, S. Alotaibi, S. Alfahad, On the reduction of desalting energy and its cost in Kuwait, Desalination, 220 (2008) 483–495.
  25. M. Himmelblau, Process Analysis by Statistical Methods, Wiley, New York, 1970.