References
- A. Madani, Economics of desalination for three plant sizes,
Desalination, 78 (1990) 187–200.
- A. Madani, S.E. Aly, A combined RO/freezing system to reduce
inland rejected brine, Desalination, 75 (1989) 241–258.
- O. Miyawaki, L. Liu, Y. Shirai, S. Sakashita, K. Kagitani, Tubular
ice system for scale-up of progressive freeze-concentration, J.
Food Eng., 69 (2005) 107–113.
- M.V. Rane, Y.S. Padiya, Heat pump operated freeze concentration
system with tubular heat exchanger for seawater desalination,
Energy Sustain. Dev., 15 (2011) 184–191.
- W. Rice, D.S.C. Chau, Freeze desalination using hydraulic
refrigerant compressors, Desalination, 109 (1997) 157–164.
- J. Sánchez, E. Hernández, J.M. Auleda, M. Raventós, Freeze
concentration of whey in a falling-film based pilot plant:
process and characterization, J. Food Eng., 103 (2011)
147–155.
- J. Sánchez, Y. Ruiz, M. Raventós, J.M. Auleda, E. Hernández,
Progressive freeze concentration of orange juice in a pilot plant
falling film, Innov. Food Sci. Emerging Technol., 11 (2010)
644–651.
- G.L. Stepakoff, D. Siegelman, R. Johnson, W. Gibson,
Development of a eutectic freezing process for brine disposal,
Desalination, 15 (1974) 25–38.
- W. Gao, D.W. Smith, D.C. Sego, Freezing behavior of freely
suspended industrial wastewater droplets, Cold Reg. Sci.
Technol., 31 (2000) 13–26.
- G. Gay, O. Lorain, A. Azouni, Y. Aurelle, Wastewater treatment
by radial freezing with stirring effects, Water Res., 37 (2003)
2520–2524.
- W. Gao, M. Habib, D.W. Smith, Removal of organic contaminants
and toxicity from industrial effluents using freezing processes,
Desalination, 245 (2009) 108–119.
- P. Ganorkar, A. Nandane, A. Tapre, Reverse Osmosis for Fruit
Juice Concentration – A Review, J. Food Sci. Technol., 1 (2012)
23–36.
- X. Cheng, M. Zhang, B. Xu, B. Adhikari, J. Sun, The principles
of ultrasound and its application in freezing related processes
of food materials, Ultrason. Sonochem., 27 (2015) 576–585.
- M.A. Darwish, M. Abdel-Jawad, J. Leif, A new dual-function
device for optimal energy recovery and pumping for all
capacities of RO systems, Desalination, 75 (1989) 25–39.
- H. Mohammed, I. Dore, Forecasting the economic costs of
desalination technology, Desalination, 172 (2005) 207–214.
- N. Yazdanpanah, A. Myerson, B. Trout, Mathematical modeling
of layer crystallization on a cold column with recirculation, Ind.
Eng. Chem. Res., 55 (2016) 5019–5029.
- APHA, Standard Methods for the Examination of Water and
Wastewater, American Public Health Association, American
Water Works Association and Water Environment Federation,
Washington, D.C., USA, 1998.
- L. Vrbka, P. Jungwirth, Brine rejection from freezing salt
solutions: a molecular dynamics study, Phys. Rev. Lett., 95
(2005) 148501.
- P. Wang, T.S. Chung, A conceptual demonstration of freeze
desalination-membrane distillation (FD-MD) hybrid
desalination process utilizing liquefied natural gas (LNG) cold
energy, Water Res., 46 (2012) 4037–4052.
- D. Zhou, L. Zhu, Y. Fu, M. Zhu, L. Xue, Development of lower
cost seawater desalination processes using nanofiltration
technologies – a review, Desalination, 376 (2015) 109–116.
- J. Chang, J. Zuo, K.J. Lu, T.S. Chung, Freeze desalination of
seawater using LNG cold energy, Water Res., 102 (2016) 282–293.
- R. Singh, Sustainable fuel cell integrated membrane desalination
systems, Desalination, 227 (2008) 14–33.
- Y. Hui, Z. Zhonglai, Y. Yuexin, Influence of gravity-induced
brine drainage on seawater ice desalination, Desalination, 407
(2017) 33–40.
- M.A. Darwish, S. Alotaibi, S. Alfahad, On the reduction of
desalting energy and its cost in Kuwait, Desalination, 220 (2008)
483–495.
- M. Himmelblau, Process Analysis by Statistical Methods, Wiley,
New York, 1970.