References

  1. W. Xiang, S. Liang, Z. Zhou, W. Qin, W. Fei, Extraction of lithium from salt lake brine containing borate anion and high concentration of magnesium, Hydrometallurgy, 166 (2016) 9–15.
  2. F.G. Will, Impact of lithium abundance and cost on electric vehicle battery applications, J. Power Sources, 63 (1996) 23–26.
  3. M.A. Delgado, C. Valencia, M.C. Sánchez, J.M. Franco, C. Gallegos, Thermorheological behaviour of a lithium lubricating grease, Tribol. Lett., 23 (2006) 47–54.
  4. A. Ritchie, W. Howard, Recent developments and likely advances in lithium-ion batteries, J. Power Sources, 162 (2006) 809–812.
  5. T. Muroga, Vanadium alloys for fusion blanket applications, Mater. Trans., 46 (2005) 405–411.
  6. U. Schafer, Past and present conceptions concerning the use of lithium in medicine, J. Trace Microprobe Tech., 16 (1998) 535–556.
  7. S.E. Kesler, P.W. Gruber, P.A. Medina, G.A. Keoleian, M.P. Everson, T.J. Wallington, Global lithium resources: relative importance of pegmatite, brine and other deposits, Ore Geol. Rev., 48 (2012) 55–69.
  8. S. Yu, The hydrochemical features of salt lakes in Qaidam Basin, Chin. J. Oceanol. Limnol., 4 (1986) 383–403.
  9. Research in China, China Lithium Carbonate Industry Report, 2009. Available at: http://www.researchinchina.com/FreeReport/PdfFile/633985558995235000.pdf/
  10. X. Liu, X. Chen, L. He, Z. Zhao, Study on extraction of lithium from salt lake brine by membrane electrolysis, Desalination, 376 (2015) 35–40.
  11. K.T. Tran, T.V. Luong, J.W. An, D.J. Kang, M.J. Kim, T. Tran, Recovery of magnesium from Uyuni salar brine as high purity magnesium oxalate, Hydrometallurgy, 138 (2013) 93–99.
  12. F.U. Ye, H. Zhong, Research situation of separating magnesium and lithium from high Mg/Li Ratio Salt Lake brine, multipurpose utilization of mineral resources, Multipurpose Util. Miner. Resour., 2 (2010) 30–32.
  13. J. Wang, The present status of lithium extraction from Li-bearing brines, Ind. Miner. Process., 12 (1999) 1–5.
  14. J.W. An, D.J. Kang, K.T. Tran, M.J. Kim, T. Lim, T. Tran, Recovery of lithium from Uyuni salar brine, Hydrometallurgy, 117–118 (2012) 64–70.
  15. Z. Zhou, Q. Wei, S. Liang, Y. Tan, W. Fei, Recovery of lithium using tributyl phosphate in methyl isobutyl ketone and FeCl3, Ind. Eng. Chem. Res., 51 (2012) 12926–12932.
  16. C. Özgür, Preparation and characterization of LiMn2O4, ion-sieve with high Li+, adsorption rate by ultrasonic spray pyrolysis, Solid State Ionics, 181 (2010) 1425–1428.
  17. T. Hoshino, Preliminary studies of lithium recovery technology from seawater by electrodialysis using ionic liquid membrane, Desalination, 317 (2013) 11–16.
  18. X. Wen, P. Ma, C. Zhu, Q. He, X. Deng, Preliminary study on recovering lithium chloride from lithium-containing waters by nanofiltration, Sep. Purif. Technol., 49 (2006) 230–236.
  19. P. Fievet, C. Labbez, A. Szymczyk, A. Vidonne, A. Foissy, J. Pagetti, Electrolyte transport through amphoteric nanofiltration membranes, Chem. Eng. Sci., 57 (2002) 2921–2931.
  20. X.L. Wang, T. Tsuru, S.I. Nakao, S. Kimura, Electrolyte transport through nanofiltration membranes by the space-charge model and the comparison with Teorell-Meyer-Sievers model, J. Membr. Sci., 103 (1995) 117–133.
  21. X.L. Wang, W.J. Shang, D.X. Wang, L. Wu, C.H. Tu, Characterization and applications of nanofiltration membranes: state of the art, Desalination, 236 (2009) 316–326.
  22. A.W. Mohammad, Y.H. Teow, W.L. Ang, Y.T. Chung, D.L. Oatley-Radcliffe, N. Hilal, Nanofiltration membranes review: recent advances and future prospects, Desalination, 356 (2015) 226–254.
  23. A. Somrani, A.H. Hamzaoui, M. Pontie, Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO), Desalination, 317 (2013) 184–192.
  24. W.R. Bowen, F. Jenner, Theoretical descriptions of membrane filtration of colloids and fine particles: an assessment and review, Adv. Colloid Interface Sci., 56 (1995) 141–200.
  25. J. Luo, L. Ding, Y. Su, S. Shao, Y. Wan, Concentration polarization in concentrated saline solution during desalination of iron dextran by nanofiltration, J. Membr. Sci., 363 (2010) 170–179.
  26. W.F. Blatt, A. Dravid, A.S. Michaels, L. Nelsen, Solute polarization and cake formation on membrane ultrafiltration: causes, consequences, and control techniques, J.E. Flinn, Ed., Membrane Science and Technology, Plenum Press, New York, 1970, pp. 47–97.
  27. M.C. Porter, Concentration polarization with membrane ultrafiltration, Ind. Eng. Chem. Prod. Res. Dev., 11 (1972) 234–248.
  28. V. Gekas, B. Hallström, Mass transfer in the membrane concentration polarization layer under turbulent cross flow: I. Critical literature review and adaptation of existing sherwood correlations to membrane operations, J. Membr. Sci., 30 (1987) 153–170.
  29. G. Schock, A. Miquel, Mass transfer and pressure loss in spiral wound modules, Desalination, 64 (1987) 339–352.
  30. E.R. Gilliland, T.K. Sherwood, Diffusion of vapors into air streams, Ind. Eng. Chem., 26 (1934) 516–523.
  31. A.R.D. Costa, A.G. Fane, C.J.D. Fell, A.F.M. Franken, Optimal channel spacer design for ultrafiltration, J. Membr. Sci., 62 (1991) 275–291.
  32. A.G. Volkov, S. Paula, D.W. Deamer, Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers, Bioelectrochem. Bioenerg., 42 (1997) 153–160.
  33. G. Yang, H. Shi, W. Liu, W. Xing, N. Xu, Investigation of Mg2+/Li+, separation by nanofiltration, Chin. J. Chem. Eng., 19 (2011) 586–591.
  34. A.E. Childress, M. Elimelech, Relating nanofiltration membrane performance to membrane charge (electrokinetic) characteristics, Environ. Sci. Technol., 34 (2000) 3710–3716.
  35. M. Elimelech, W.H. Chen, J.J. Waypa, Measuring the zeta (electrokinetic) potential of reverse osmosis membranes by a streaming potential analyzer, Desalination, 95 (1994) 269–286.
  36. A.E. Childress, M. Elimelech, Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes, J. Membr. Sci., 119 (1996) 253–268.
  37. O. Kedem, A. Katchalsky, Permeability of composite membranes. Part 1. Electric current, volume flow and flow of solute through membranes, Trans. Faraday Soc., 59 (1963) 1918–1930.
  38. J. Straatsma, G. Bargeman, H.C.V.D. Horst, J.A. Wesselingh, Can nanofiltration be fully predicted by a model? J. Membr. Sci., 198 (2002) 273–284.
  39. G. Hagmeyer, R. Gimbel, Modelling the salt rejection of nanofiltration membranes for ternary ion mixtures and for single salts at different pH values, Desalination, 117 (1998) 247.
  40. G. Bargeman, J.M. Vollenbroek, J. Straatsma, C.G.P.H. Schroën, R.M. Boom, Nanofiltration of multi-component feeds. Interactions between neutral and charged components and their effect on retention, J. Membr. Sci., 247 (2005) 11–20.
  41. W.R. Bowen, A.W. Mohammad, Characterization and prediction of nanofiltration membrane performance—a general assessment, Chem. Eng. Res. Des., 76 (1998) 885–893.
  42. P. Aimar, R. Field, Limiting flux in membrane separations: a model based on the viscosity dependency of the mass transfer coefficient, Chem. Eng. Sci., 47 (1992) 579–586.
  43. O.F.V. Meien, R. Nobrega, Ultrafiltration model for partial solute rejection in the limiting flux region, J. Membr. Sci., 95 (1994) 277–287.
  44. J. Luo, Y. Wan, Effects of pH and salt on nanofiltration—a critical review, J. Membr. Sci., 438 (2013) 18–28.
  45. R. Jiraratananon, A. Sungpet, P. Luangsowan, Performance evaluation of nanofiltration membranes for treatment of effluents containing reactive dye and salt, Desalination, 130 (2000) 177–183.
  46. A. Szymczyk, P. Fievet, Investigating transport properties of nanofiltration membranes by means of a steric, electric and dielectric exclusion model, J. Membr. Sci., 252 (2005) 77–88.
  47. A. Szymczyk, P. Fievet, Ion transport through nanofiltration membranes: the steric, electric and dielectric exclusion model, Desalination, 200 (2006) 122–124.
  48. A.E. Yaroshchuk, Dielectric exclusion of ions from membranes, Adv. Colloid Interface Sci., 85 (2000) 193–230.
  49. X. Li, C. Zhang, S. Zhang, J. Li, B. He, Z. Cui, Preparation and characterization of positively charged polyamide composite nanofiltration hollow fiber membrane for lithium and magnesium separation, Desalination, 369 (2015) 26–36.
  50. S. Bandini, D. Vezzani, Nanofiltration modeling: the role of dielectric exclusion in membrane characterization, Chem. Eng. Sci., 58 (2003) 3303–3326.
  51. L.A. Richards, M. Vuachère, A.I. Schäfer, Impact of pH on the removal of fluoride, nitrate and boron by nanofiltration/reverse osmosis, Desalination, 261 (2010) 331–337.
  52. M. Mänttäri, A. Pihlajamäki, M. Nyström, Effect of pH on hydrophilicity and charge and their effect on the filtration efficiency of NF membranes at different pH, J. Membr. Sci., 280 (2006) 311–320.
  53. J.J. Qin, M.H. Oo, H. Lee, B. Coniglio, Effect of feed pH on permeate pH and ion rejection under acidic conditions in NF process, J. Membr. Sci., 232 (2004) 153–159.
  54. C. Mazzoni, L. Bruni, S. Bandini, Nanofiltration: role of the electrolyte and pH on Desal DK performances, Ind. Eng. Chem. Res., 46 (2007) 2254–2262.