References

  1. O. Kazak, A. Tor, I. Akin, G. Arslan, Preparation and characterization of novel polysulfone-red mud composite capsules for the removal of fluoride from aqueous solutions, RSC Adv., 6 (2016) 86673–86681.
  2. P. Miretzky, A.F. Cirelli, Fluoride removal from water by chitosan derivatives and composites: a review, J. Fluorine Chem., 132 (2011) 231–240.
  3. Meenakshi, R.C. Maheshwari, Fluoride in drinking water and its removal, J. Hazard. Mater., 137 (2006) 456–463.
  4. M. Amini, K. Mueller, K.C. Abbaspour, T. Rosenberg, M. Afyuni, K.N. Moller, M. Sarr, C.A. Johnson, Statistical modeling of global geogenic fluoride contamination in ground waters, Environ. Sci. Technol., 42 (2008) 3662–3668.
  5. S. Bibi, M.A. Kamran, J. Sultana, A. Faroo, Occurrence and methods to remove arsenic and fluoride contamination in water, Environ. Chem. Lett., 15 (2017) 125–149.
  6. WHO Guidelines for Drinking-Water Quality [Electronic Resource]: Incorporating First Addendum, WHO, Geneva, 2006, pp. 375–377.
  7. C.S. Sundaram, N. Viswanathan, S. Meenakshi, Uptake of fluoride by nano-hydroxyapatite/chitosan, a bioinorganic composite, Bioresour. Technol., 99 (2008) 8226–8230.
  8. A. Bhatnagar, E. Kumar, M. Sillanpaa, Fluoride removal from water by adsorption—a review, Chem. Eng. J., 171 (2011) 811–840.
  9. K. Pandi, N. Viswanathan, In situ precipitation of nanohydroxyapatitie in gelatin polymatrix towards specific fluoride sorption, Int. J. Biol. Macromol., 74 (2015) 351–359.
  10. R. Srinivasan, Advances in application of natural clay and its composites in removal of biological, organic, and inorganic contaminants from drinking water, Adv. Mater. Sci. Eng., 2011 (2011) 1–17, doi: 1155/2011/872531.
  11. N. Rajamohan, J. Al-Sinani, Removal of boron using clay-effect of process parameters, kinetic and isotherm studies, J. Eng. Sci. Technol., 3 (2016) 311–326.
  12. K.G. Bhattacharya, S. Sen Gupta, Influence of acid activation on adsorption of Ni(II) and Cu(II) on kaolinite and montmorillonite: kinetic and thermodynamic study, Chem. Eng. J., 136 (2008) 1–13.
  13. M. Auta, B.H. Hameed, Modified mesoporous clay adsorbent for adsorption isotherm and kinetics of methylene blue, Chem. Eng. J., 198–199 (2012) 219–227.
  14. P. Devi, A.K. Saroha, Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals, Bioresour. Technol., 162 (2014) 308–315.
  15. APHA, Standard Methods for the Examination of Water and Waste Water, 21st ed., American Public Health Association, Washington, D.C., USA, 2005.
  16. Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  17. R. Jayakumar, M. Rajasimman, C. Karthikeyan, Sorption of hexavalent chromium from aqueous solution using marine green algae Halimeda gracilis: optimization, equilibrium, kinetic, thermodynamic and desorption studies, J. Environ. Chem. Eng., 2 (2014) 1261–1274.
  18. S. Ravulapalli, R. Kunta, Defluoridation studies using active carbon derived from the barks of Ficus racemosa plant, J. Fluorine Chem., 193 (2017) 58–66.
  19. N. Viswanathan, S. Meenakshi, Enriched fluoride sorption using alumina/chitosan composite, J. Hazard. Mater., 178 (2010) 226–232.
  20. D. Thakre, S. Rayalu, R. Kawade, S. Meshram, J. Subrt, N. Labhsetwar, Magnesium incorporated bentonite clay for defluoridation of drinking water, J. Hazard. Mater., 180 (2010) 122–130.