References
- M.L. Inamuddin, Ion Exchange Technology II: Applications,
Springer, Netherlands, 2012.
- H. Bradl, Heavy Metals in the Environment: Origin, Interaction
and Remediation, Vol. 6, Academic Press, London, 2002.
- R.C. Pena, A.P.R. de Souza, M. Bertotti, Determination of Fe
(III) in wine samples using a ruthenium oxide hexacyanoferrate
modified microelectrode, J. Electroanal. Chem., 731 (2014)
49–52.
- N. Abbaspour, R. Hurrell, R. Kelishadi, Review on iron and
its importance for human health, J. Res. Med. Sci., 19 (2014)
164–174.
- M.T. Nunez, V. Tapia, S. Toyokuni, S. Okada, Iron-induced
oxidative damage in colon carcinoma (Caco-2) cells, Free Radic.
Res., 34 (2001) 57–68.
- S.M. Abdel-Azeem, N.R. Bader, H.M. Kuss, M.F. El-Shahat,
Determination of total iron in food samples after flow injection
preconcentration on polyurethane foam functionalized with
N,N-bis(salicylidene)-1,3-propanediamine, Food Chem., 138
(2013) 1641–1647.
- C. Niederau, R. Fischer, A. Purschel, W. Stremmel, D.
Haussinger, Longterm survival in patients with hereditary
hemochromatosis. Gastroenterology, 110 (1996) 1107–1119.
- H. Abdolmohammad-Zadeh, M. Galeh-Assadi, S. Shabkhizan,
H. Mousazadeh, Sol–gel processed pyridinium ionic
liquid-modified silica as a new sorbent for separation and
quantification of iron in water samples, Arab. J. Chem., 9 (2016)
S587–S594.
- M.A. Kassem, A.S. Amin, Spectrophotometric determination
of iron in environmental and food samples using solid phase
extraction, Food Chem., 141 (2013) 1941–1946.
- A. Asan, R. Aydin, D. Karsli Semiz, V. Erci, I. Isildak, A very
sensitive flow-injection spectrophotometric determination
method for iron (II) and total iron using 2′, 3, 4′, 5,
7-pentahydroxyflavone, Environ. Monit. Assess., 185 (2013)
2115–2121.
- B. Horstkotte, P. Chocholouš, P. Solich, Large volume
preconcentration and determination of nanomolar
concentrations of iron in seawater using a renewable cellulose
8-hydroquinoline sorbent microcolumn and universal approach
of post-column eluate utilization in a Lab-on-Valve system,
Talanta, 150 (2016) 213–223.
- A.S. Amin, A.A. Gouda, Utility of solid-phase
spectrophotometry for determination of dissolved iron(II)
and iron(III) using 2,3-dichloro-6-(3-carboxy-2-hydroxy-1-naphthylazo) quinoxaline, Talanta, 76 (2008) 1241–1245.
- A. Babaei, M. Babazadeh, E. Shams, Simultaneous
determination of iron, copper, and cadmium by adsorptive
stripping voltammetry in the presence of thymol phthalexone,
Electroanalysis, 19 (2007) 978–985.
- M. Grotti, F. Soggia, F. Ardini, R. Frache, Determination of
sub-nanomolar levels of iron in seawater using reaction cell
inductively coupled plasma mass spectrometry after Mg(OH)2 coprecipitation, J. Anal. At. Spectrom., 24 (2009) 522–527.
- R. Mirzajani, N. Pourreza, A.R. Kiasat, R. Abdollahzadeh,
Solid phase extraction and determination of Fe (III) in some
vegetables and natural water samples using a new inorganic/organic hybrid adsorbent, Int. J. Environ. Anal. Chem., 94 (2014)
411–426.
- S.G. Silva, P.V. Oliveira, F.R.P. Rocha, A green analytical
procedure for determination of copper and iron in plant
materials after cloud point extraction, J. Braz. Chem. Soc., 21
(2010) 234–239.
- H. Kaasalainen, A. Stefánsson, G.K. Druschel, Determination of
Fe(II), Fe(III) and Fetotal in thermal water by ion chromatography
spectrophotometry (IC-Vis), Int. J. Environ. Anal. Chem., 96
(2016) 1074–1090.
- Y. Ji, X. Liu, M. Guan, Ch. Zhao, H. Huang, H. Zhang, C.
Wang, Preparation of functionalized magnetic nanoparticulate
sorbents for rapid extraction of biphenolic pollutants from
environmental samples, J. Sep. Sci., 32 (2009) 2139–2145.
- J.E. Smith, L. Wang, W.H. Tan, Bioconjugated silica-coated
nanoparticles for bioseparation and bioanalysis, Trends Anal.
Chem., 25 (2006) 848–855.
- A. Bavili Tabrizi, M.R. Rashidi, H. Ostadi, A Nanoparticlebased
solid-phase extraction procedure followed by
spectrofluorimetry to determine carbaryl in different water
samples, J. Braz. Chem. Soc., 25 (2014) 709–715.
- T. Kamal, Sh. Bahadar Khan, A.M. Asiri, Synthesis of zerovalent
Cu nanoparticles in the chitosan coating layer on
cellulose microfibers: evaluation of azo dyes catalytic reduction,
Cellulose, 23 (2016) 1911–1923.
- J.S. Yamania, S.M. Miller, M.L. Spaulding, J.B. Zimmerman,
Enhanced arsenic removal using mixed metal oxide
impregnated chitosan beads, Water Res., 46 (2012) 4427–4434.
- R.B.N. Baig, R.S. Varma, Magnetically retrievable catalysts for
organic synthesis, Chem. Commun., 49 (2013) 752–770.
- W.L. Tan, N.H.H. Abu Bakar, M. Abu Bakar, Catalytic reduction
of p-nitrophenol using chitosan stabilized copper nanoparticles,
Catal. Lett., 145 (2015) 1626–1633.
- Y.A. Azarova, A.V. Pestov, S. Yu. Bratskaya, Application
of chitosan and its derivatives for solid-phase extraction of
metal and metalloid ions: a mini-review, Cellulose, 23 (2016)
2273–2289.
- A.A. Galhoum, A.A. Atia, M.G. Mahfouz, S.T. Abdel-Rehem,
N.A. Gomaa, T. Vincent, E. Guibal, Dy(III) recovery from dilute
solutions using magnetic-chitosan nano-based particles grafted
with amino acids, J. Mater. Sci., 50 (2015) 2832–2848.
- J.D. Merrifield, W.G. Davids, J.D. MacRae, A. Amirbahman,
Uptake of mercury by thiol-grafted chitosan gel beads, Water
Res., 38 (2004) 3132–3138.
- R. Qu, Ch. Sun, M. Wang, Ch. Ji, Q. Xu, Y. Zhang, Ch. Wang, H.
Chen, P. Yin, Adsorption of Au (III) from aqueous solution using
cotton fiber/chitosan composite adsorbents, Hydrometallurgy,
100 (2009) 65–71.
- J. Xu, G. Yuvaraja, W. Zhang, Application of chitosan/poly(vinyl
alcohol)/CuO (CS/PVA/CuO) beads as an adsorbent material
for the removal of Pb(II) from aqueous environment, Colloids.
Surf., B, 149 (2017) 184–195.
- J. Guijuan, B. Weiwei, G. Guimei, A.N. Baichao, Z. Haifeng, G.
Shucai, Removal of Cu (II) from aqueous solution using a novel
crosslinked alumina-chitosan hybrid adsorbent, Chin. J. Chem.
Eng., 20 (2012) 641–648.
- P.K. Dutta, R. Srivastava, J. Dutta, Functionalized nanoparticles
and chitosan-based functional nanomaterials, Adv. Polym. Sci.,
254 (2013) 1–50.
- H. Zhu, L. Xiao, R. Jiang, G.M. Zeng, L. Liu, Efficient decolorization
of azo dye solution by visible light-induced photocatalytic
process using SnO2/ZnO heterojunction immobilized in chitosan
matrix, Chem. Eng. J., 172 (2011) 746–753.
- R. Saravanan, E. Sacari, F. Gracia, M. Mansoob Khan, E.
Mosquera, Conducting PANI stimulated ZnO system for visible
light photocatalytic degradation of coloured dyes, J. Mol. Liq.,
221 (2016) 1029–1033.
- D. Chen, X. Sun, Y. Guo, L. Qiao, X. Wang, Acetylcholinesterase
biosensor based on multi-walled carbon nanotubes-SnO2-chitosan
nanocomposite, Bioprocess Biosyst. Eng., 38 (2015) 315–321.
- V. Kumar Gupta, R. Saravanan, S. Agarwal, F. Gracia, M.
Mansoob Khan, J. Qin, R.V. Mangalaraja, Degradation of azo
dyes under different wavelengths of UV light with chitosan-SnO2 nanocomposites, J. Mol. Liq., 232 (2017) 423–430.
- T. Yang, X. Guo, Y. Ma, Q. Li, L. Zhong, K. Jiao, Electrochemical
impedimetric DNA sensing based on multi-walled carbon
nanotubes–SnO2–chitosan nanocomposite, Colloids Surf., B,
107 (2013) 257–261.
- A. Rajbhandari, T. Subedi, Spectrophotometric Determination of
Total Iron in Rice and Maize Samples, Scientific World, Vol. 11,
2013, pp. 101–104.
- R. Mirzajani, N. Pourreza, S. Safar Ali Najjar, b-Cyclodextrinbased
polyurethane (b-CDPU) polymers as solid media for
adsorption and determination of Pb(II) ions in dust and water
samples, Res. Chem. Intermed., 40 (2014) 2667–2679.
- R.B. Biniwale, N.S. Milmile, J.V. Pande, S. Karmakar, A.
Bansiwal, T. Chakrabarti, Equilibrium isotherm and kinetic
modeling of the adsorption of nitrates by anion exchange
Indion NSSR resin, Desalination, 276 (2011) 38–44.
- S. Tazikeh, A. Akbari, A. Talebi, E. Talebi, Synthesis
and characterization of tin oxide nanoparticles via the
co-precipitation method, Mater. Sci.-Poland, 32 (2014) 98–101.
- Y. Haldorai, D. Kharismadewi, D. Tuma, J. Jin Shim, Properties
of chitosan/magnetite nanoparticles composites for efficient
dye adsorption and antibacterial agent, Korean J. Chem. Eng.,
32 (2015) 1688–1693.
- Sh. Yang, Zh. Wu, L.P. Huang, B. Zhou, M. Lei, L. Sun, Q. Tian,
J. Pan, W. Wu, H. Zhang, Significantly enhanced dye removal
performance of hollow tin oxide nanoparticles via carbon
coating in dark environment and study of its mechanism,
Nanoscale Res. Lett., 9 (2014) 442–450.
- J. Xu, M. Chen, Ch. Zhang, Zh. Yi, Adsorption of uranium(VI)
from aqueous solution by diethylenetriamine-functionalized
magnetic chitosan, J. Radioanal. Nucl. Chem., 298 (2013)
1375–1383.
- J. Xu, L. Zhou, Y. Jia, Zh. Liu, A.A. Adesina, Adsorption of
thorium (IV) ions from aqueous solution by magnetic chitosan
resins modified with triethylene-tetramine, J. Radioanal. Nucl.
Chem., 303 (2015) 347–356.
- W. Feng, D. Nansheng, Photochemistry of hydrolytic iron (III)
species and photoinduced degradation of organic compounds,
a mini review, Chemosphere, 41 (2000) 1137–1147.
- J. Fenga, X. Hea, X. Liub, X. Suna, Y. Lia, Preparation of
magnetic graphene/mesoporous silica composites with phenylfunctionalized
pore-walls as the restricted access matrix solid
phase extraction adsorbent for the rapid extraction of parabens
from water-based skin toners, J. Chromatogr. A, 1465 (2016)
20–29.
- K.Y. Kumar, T.N.V. Raj, S. Archana, S.B.B. Prasad, Sh. Olivera,
H.B. Muralidhara, SnO2 nanoparticles as effective adsorbents
for the removal of cadmium and lead from aqueous solution:
adsorption mechanism and kinetic studies, J. Water Process
Eng., 13 (2016) 44–52.
- J. Daia, H. Yang, H. Yan, Y. Shangguan, Q. Zheng, R. Cheng,
Phosphate adsorption from aqueous solutions by disused
adsorbents: chitosan hydrogel beads after the removal of
copper(II), Chem. Eng. J., 166 (2011) 970–977.
- Y. Ren, H.A. Abbood, F. He, Hong Peng, K. Huang, Magnetic
EDTA-modified chitosan/SiO2/Fe3O4 adsorbent: preparation,
characterization, and application in heavy metal adsorption,
Chem. Eng. J., 226 (2013) 300–311.
- Y.M. Hao, C. Man, Z.B. Hu, Effective removal of Cu (II) ions
from aqueous solution by amino-functionalized magnetic
nanoparticles, J. Hazard. Mater., 184 (2010) 392–399.
- M.K. Kim, K. Sh. Sundaram, G.A. Iyengar, K.P. Lee, A novel
chitosan functional gel included with multiwall carbon
nanotube and substituted polyaniline as adsorbent for efficient
removal of chromium ion, Chem. Eng. J., 267 (2015) 51–64.
- M. Naushad, T. Ahamad, G. Sharma, A. Al-Muhtaseb, A.B.
Albadarin, M.M. Alam, Z.A. ALOthman, S.M. Alshehri, A.A.
Ghfar, Synthesis and characterization of a new starch/SnO2
nanocomposite for efficient adsorption of toxic Hg2+ metal ion,
Chem. Eng. J., 300 (2016) 306–316.
- A.U. Itodo, H.U. Itodo, Sorption energies Estimation Using
Dubinin-Radushkevich and Temkin adsorption isotherms, Life
Sci. J., 7 (2010) 33–39.
- M.J. Horsfall, A.I. Spiff, A.A. Abia, Studies on the influence of
mercaptoacetic acid (MAA) modification of cassava (Manihot
sculenta Cranz.) waste biomass on the adsorption of Cu2+ and
Cd2+ from aqueous solution, Bull. Korean Chem. Soc., 25 (2004)
969–976.
- T. Fan, Y. Liu, B. Feng, G. Zeng, C. Yang, M. Zhou, H. Zhou,
Z. Tan, X. Wang, Biosorption of cadmium (II), zinc (II) and
lead (II) by Penicillium simplicissimum: isotherms, kinetics and
thermodynamics, J. Hazard. Mater., 160 (2008) 661–665.
- J.N. Miller, J.C. Miller, Statistics and Chemometrics for Analytical
Chemistry, 6th edn., Pearson Education Limited, England,
London, 2010.
- B. Tanhaei, A. Ayati, M. Lahtinen, M. Sillanpa, Preparation
and characterization of a novel chitosan/Al2O3/magnetite
nanoparticles composite adsorbent for kinetic, thermodynamic
and isotherm studies of Methyl Orange adsorption, Chem. Eng.
J., 259 (2015) 1–10.
- R. Mirzajani, F. Kardani, Fabrication of ciprofloxacin molecular
imprinted polymer coating on a stainless steel wire as a selective
solid-phase microextraction fiber for sensitive determination of
fluoroquinolones in biological fluids and tablet formulation
using HPLC-UV detection, J. Pharm. Biomed. Anal., 122 (2016)
98–109.
- B. Peng, Y. Shen, Zh. Gao, M. Zhou, Y. Ma, Sh. Zhao,
Determination of total iron in water and foods by dispersive
liquid–liquid microextraction coupled with microvolume UV–vis spectrophotometry, Food Chem., 176 (2015) 288–293.