References

  1. L.F. Diaz, M. De Bertoldi, W. Bidlingmaier, Eds., Compost Science and technology, Elsevier, Amsterdam, 2011, p. 364.
  2. Z. Szczepaniak, J. Staninska-Pięta, M. Sydow, Biodegradation of polycyclic aromatic hydrocarbons in the composting process as a removal strategy of organic pollutants, J. Res. Appl. Agric. Eng., 61 (2016) 96–99.
  3. T.J. Lim, K.A. Spokas, G. Feyereisen, J.M. Novak, Predicting the impact of biochar additions on soil hydraulic properties, Chemosphere, 142 (2016) 136–144.
  4. B. Vandecasteele, T. Sinicco, T. D’Hose, T. Vanden Nest, C. Mondini, Biochar amendment before or after composting affects compost quality and N losses, but not P plant uptake, J. Environ. Manage., 168 (2016) 200–209.
  5. M. Mierzwa, K. Gondek, M. Kopeć, Nitrogen content in humic fractions in composts produced after addition of polyethylene and corn starch-containing waste materials, Przem. Chem., 93 (2014) 321–325.
  6. O. Fourti, N. Jedidi, A. Hassen, J. World, Humic substances change during the co-composting process of municipal solid wastes and sewage sludge, Microbiol. Biotechnol., 26 (2010) 2117–2122.
  7. O. Bikovens, T. Dizhbite, G. Telysheva, Characterisation of humic substances formed during co-composting of grass and wood wastes with animal grease, Environ. Technol., 33 (2012) 1427–1433.
  8. H. Saveyn, P. Eder, End-of-criteria for Biodegradable Waste Subjected to Biological Treatment (Compost & Digestate): Technical Proposals, Publications Office of the European Union, Luxemburg, JRC87124. Available at: http://ftp.jrc.es/EURdoc/JRC87124.pdf 2014.
  9. T. Ciesielczuk, G. Kusza, J. Poluszyńska, K. Kochanowska, Pollution of flooded arable soils with heavy metals and polycyclic aromatic hydrocarbons (PAHs), Water Air Soil Pollut., 225 (2014) 2145.
  10. M. Kołtowski, P. Oleszczuk, Toxicity of biochars after polycyclic aromatic hydrocarbons removal by thermal treatment, Ecol. Eng., 75 (2015) 79–85.
  11. A. Klimkowicz-Pawlas, B. Smreczak, A. Ukalska-Jaruga, The impact of selected soil organic matter fractions on the PAH accumulation in the agricultural soils from areas of different anthropopressure, Environ. Sci. Pollut. Res., 24 (2017) 10955–10965.
  12. M. Włodarczyk-Makuła, Half-life of carcinogenic polycyclic aromatic hydrocarbons in stored sewage sludge, Arch. Environ. Prot., 38 (2012) 33–44.
  13. A. Sieciechowicz, Z. Sadecka, S. Myszograj, M. Włodarczyk-Makuła, E. Wiśniowska, A. Turek, Occurrence of heavy metals and PAHs in soil and plants after application of sewage sludge to soil, Desal. Wat. Treat., 52 (2014) 4014–4026.
  14. I. Siebielska, Comparison of changes in selected polycyclic aromatic hydrocarbons concentrations during the composting and anaerobic digestion processes of municipal waste and sewage sludge mixtures, Water Sci. Technol., 70 (2014) 1617–1624.
  15. P. Oleszczuk, Investigation of potentially bioavailable and sequestrated forms of polycyclic aromatic hydrocarbons during sewage sludge composting, Chemosphere, 70 (2007) 288–297.
  16. J. Poluszyńska, Biodegradation von mehrkernigen, aromatischen Kohlenwasserstoffen (MAK) im Kompostierungsprozess von kommunalen Klärschlämmen, ICIMB, 5 (2014) 395–422.
  17. X. Hao, J. Li, Z. Yao, Changes in PAHs levels in edible oils during deep-frying process, Food Control, 66 (2016) 233–240.
  18. A. Zielińska, P. Oleszczuk, Bioavailability and bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) in historically contaminated soils after lab incubation with sewage sludgederived biochars, Chemosphere, 163 (2016) 480–489.
  19. M. Gałwa-Widera, Disposal of sewage sludge in the process of composting with the use of different cycles aeration, Eng. Protect. Environ., 17 (2014) 661–671.
  20. M. Kopeć, K. Gondek, M. Mierzwa-Hersztek, T. Zaleski, Effect of the composting process on physical and energetic changes in compost, Acta Agrophisica, 23 (2016) 607–619.
  21. Elementar Analysensysteme GmbH, Operating Instructions Vario MAX cube, 2013, p. 407.
  22. EBC, European Biochar Certificate - Guidelines for a Sustainable Production of Biochar. European Biochar Foundation (EBC), Arbaz, Switzerland, Version 6.1 of 19th June 2015, 2012.
  23. A. Ghani, M. Dexter, K.W. Perrott, Hotwater extractable carbon in soils; a sensitive measurement for determining impacts of fertilisation, grazing and cultivation, Soil Biol. Biochem., 35 (2003) 1231–1243.
  24. D.L. Jones, V.B. Willet, Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil, Soil Biol. Biochem., 38 (2006) 991–999.
  25. D. Kalembasa, The content of carbon and nitrogen in acid and alkaline extracts from vermicomposts, Arch. Environ. Prot., 24 (1998) 111–119.
  26. ISO 12782-4:2012, Soil Quality – Parameters for Geochemical Modelling of Leaching and Speciation of Constituents in Soil and Materials- Part 4: Extraction of Humic Substances from Solid Samples.
  27. K. Gondek, M. Mierzwa-Hersztek, B. Smreczak, A. Baran, M. Kopeć, T. Mróz, P. Janowski, T. Bajda, A. Tomczyk, Content of PAHs, activities of γ-radionuclides and ecotoxicological assessment in biochars, Pol. J. Chem. Technol., 18 (2016) 27–35.
  28. International Standardization Organization (ISO), Soil Quality — Determination of Polycyclic Aromatic Hydrocarbons (PAH) — Gas Chromatographic Method with Mass Spectrometric Detection (GC-MS), ISO 18287, Geneva, 2006.
  29. B. Maliszewska-Kordybach, B. Smreczak, A. Klimkowicz- Pawlas, Effects of anthropopressure and soil properties on the accumulation of polycyclic aromatic hydrocarbons in the upper layer of soils in selected regions of Poland, Appl. Geochem., 24 (2009) 1918–1926.
  30. E.P. Barret, L.G. Joyner, P.H. Halenda, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms, J. Am. Chem. Soc., 73 (1951) 373–380.
  31. M. Kopeć, A. Baran, K. Gondek, M. Mierzwa-Hersztek, M.J. Chmiel, Effect of the addition of biochar and coffee grounds on the biological properties and ecotoxicity of composts, Waste Biomass Valorization, (2017) 1–10. DOI: 10.1007/s12649-017-9916-y.
  32. N. Khan, I. Clark, M.A. Sánchez-Monedero, S. Shea, S. Meier, F. Qi, R.S. Kookana, N. Bolan, Physical and chemical properties of biochars co-composted with biowastes and incubated with a chicken litter compost, Chemosphere, 142 (2016) 14–23.
  33. J. Choma, Micro-mesoporous carbons: synthesis, properties, application, Eng. Prot. Environ., 16 (2013) 163–178.
  34. B. Jansen, K. Kalbitz, W. McDowell, Dissolved organic matter: linking soils and aquatic systems, Vadose Zone J., 13 (2014) 1–4.
  35. T. Filep, E. Draskovits, J. Szabó, S. Koós, P. László, Z. Szalai, The dissolved organic matter as a potential soil quality indicator in arable soils of Hungary, Environ. Monit. Assess., 187 (2015) 479.
  36. P. Caricasole, M.R. Provenzano, P.G. Hatcher, N. Senesi, Chemical characteristics of dissolved organic matter during composting of different organic wastes assessed by 13C CPMAS NMR spectroscopy, Bioresour. Technol., 101 (2010) 8232–8236.
  37. G. Haddad, F. El-Ali, A. Mouneimne, Humic matter of compost: determination of humic spectroscopic ratio (E4/E6), Curr. Sci. Int., 4 (2015) 56–92.
  38. M. Włodarczyk-Makuła, PAHs balance in solid and liquid phase of sewage sludge during fermentation process, J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 43 (2008) 1602–1609.
  39. P. Oleszczuk, Bioavailability and bioaccumulation of hydrophobic organic pollutants. Part II. Sorption of pollutants and factors influencing this process, Biotechnologia, 1 (2007) 26–39.
  40. M. Włodarczyk-Makuła, Comparison of biotic and abiotic changes of PAHs in soil fertilized with sewage sludge, Eng. Prot. Environ., 12 (2010) 559–573.
  41. E. Winquist, K. Björklöf, E. Schultz, M. Räsänen, K. Salonen, F. Anasonye, T. Cajthaml, K.T. Steffen, K.S. Jørgensen, M. Tuomela, Bioremediation of PAH-contaminated soil with fungi – from laboratory to field scale, Int. Biodeterior. Biodegrad., 86 (2014) 238–247.
  42. Y. Cao, B. Yang, Z. Song, H. Wang, F. He, X. Han, Wheat straw biochar amendments on the removal of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil, Ecotoxicol. Environ. Saf., 130 (2016) 248–255.
  43. M. Kuśmierz, P. Oleszczuk, P. Kraska, E. Pałys, S. Andruszczak, Persistence of polycyclic aromatic hydrocarbons (PAHs) in biochar-amended soil, Chemosphere, 146 (2016) 272–279.
  44. W. Sądej, A. Namiotko, Content of polycyclic aromatic hydrocarbons in soil fertilized with composted municipal waste, Pol. J. Environ. Stud., 5 (2010) 999–1005.
  45. K. Jindo, K. Suto, K. Matsumoto, C. Garcia, T. Sonoki, M.A. Sanchez-Monedero, Chemical and biochemical characterisation of biochar-blended composts prepared from poultry manure, Bioresour. Technol., 110 (2012) 396–404.
  46. Y. Zhang, Y. Guan, Q. Shi, Simulating the dynamics of polycyclic aromatic hydrocarbon (PAH) in contaminated soil through composting by COP-Compost model, Environ. Sci. Pollut. Res. Int., 22 (2015) 3004–3012.