References

  1. G.G. Lenzi, C.V.B. Fávero, L.M.S. Colpini, H. Bernabe, M.L. Baesso, S. Specchia, O.A.A. Santos, Photocatalytic reduction of Hg2+ on TiO2 and Ag/TiO2 prepared by the sol–gel and impregnation methods, Desalination, 270 (2011) 241–247.
  2. M.J. López-Muñoz, J. Aguado, A. Arencibia, R. Pascual, Mercury removal from aqueous solutions of HgCl2 by heterogeneous photocatalysis with TiO2, Appl. Catal., B, 104 (2011) 220–228.
  3. L.C. Mansur, Review of the use of mercury in historic and current ritualistic and spiritual practices, Environ. Med., 16 (2011) 314–320.
  4. H. Parham, B. Zargar, R. Shiralipour, Fast and efficient removal of mercury from water samples using magnetic iron, J. Hazard. Mater., 205–206 (2012) 94–100.
  5. F. Da Pieve, M. Stankowski, C. Hogan, Electronic structure calculations of mercury mobilization from mineral phases and photocatalytic removal from water and the atmosphere, Sci. Total Environ., 493 (2014) 596–605.
  6. B. Dou, H. Chen, Removal of toxic mercury(II) from aquatic solutions by synthesized TiO2 nanoparticles, Desalination, 269 (2011) 260–265.
  7. C. Siriwong, N. Wetchakun, B. Inceesungvorn, D. Channei, T. Samerjai, S. Phanichphant, Doped-metal oxide nanoparticles for use as photocatalysts, Prog. Cryst. Growth Charact. Mater., 58 (2012) 145–163.
  8. P.R. Gogate, A.B. Pandit, A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions, Adv. Environ. Res., 8 (2004) 501–555.
  9. S. Rengaraj, X.Z. Li, Enhanced photocatalytic reduction reaction over Bi3+–TiO2 nanoparticles in presence of formic acid as a hole scavenger, Chemosphere, 66 (2007) 930–938.
  10. H. Gan, G. Zhang, H. Huang, Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli by Bi2O2CO3/Bi3NbO7 composites, J. Hazard. Mater., 250–251 (2013) 131–137.
  11. B.K. Mutuma, G.N. Shao, W.D. Kim, H.T. Kim, Sol–gel synthesis of mesoporous anatase–brookite and anatase–brookite–rutile TiO2 nanoparticles and their photocatalytic properties, J. Colloid Interface Sci., 442 (2015) 1–7.
  12. Z. Wan, G. Zhang, X. Wu, S. Yin, Novel visible-light-driven Z-scheme Bi12GeO20/g-C3N4 photocatalyst: oxygen-induced pathway of organic pollutants degradation and proton assisted electron transfer mechanism of Cr(VI) reduction, Appl. Catal., B, 207 (2017) 17–26.
  13. Y. Zhang, F. Zhang, Z. Yang, H. Xue, D.D. Dionysiou, Development of a new efficient visible-light-driven photocatalyst from SnS2 and polyvinyl chloride, J. Catal., 344 (2016) 692–700.
  14. Y.C. Zhang, L. Yao, G. Zhang, D.D. Dionysiou, J. Li, X. Du, Onestep hydrothermal synthesis of high-performance visible-lightdriven SnS2/SnO2 nanoheterojunction photocatalyst for the reduction of aqueous Cr(VI), Appl. Catal., B, 144 (2014) 730–738.
  15. V.N. Salomone, J.M. Meichtry, M.I. Litter, Heterogeneous photocatalytic removal of U(VI) in the presence of formic acid: U(III) formation, Chem. Eng. J., 270 (2015) 28–35.
  16. J.C. Colmenares, M.A. Aramendía, A. Marinas, J.M. Marinas, F.J. Urbano, Synthesis, characterization and photocatalytic activity of different metal-doped titania systems, Appl. Catal., A, 306 (2006) 120–127.
  17. S. Zhu, T. Shi, W. Liu, S. Wei, Y. Xie, C. Fan, Y. Li, Direct determination of local structure around Fe in anatase TiO2, Physica B, 396 (2005) 177–180.
  18. R.M. Mohamed, M.A. Salam, Photocatalytic reduction of aqueous mercury(II) using multi-walled carbon nanotubes/Pd-ZnO nanocomposite, Mater. Res. Bull., 50 (2014) 85–90.
  19. Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar, J. He, Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review, Nanoscale, 5 (2013) 8326–8350.
  20. J. Zhu, W. Zheng, B. He, J. Zhang, M. Anpo, Characterization of Fe–TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water, J. Mol. Catal. A: Chem., 216 (2004) 35–43.
  21. Joint Committee on Powder Diffraction Standards, International Centre for Diffraction Data, PCPDFWIN v.130, 1997.
  22. I. Ganesh, P.K. Kumar, A.K. Gupta, P.S.C. Sekhar, K. Radha, G. Padmanabham, G. Sundararajan, Preparation and characterization of Fe-doped TiO2 powders for solar light response and photocatalytic applications, Process. Appl. Ceram., 6 (2012) 21–36.
  23. J.M. Herrmann, C. Guillard, Photocatalytic degradation of pesticides in agricultural used waters, Chemistry, 3 (2000) 417–422.
  24. S. Malato, J. Blanco, A. Vidal, C. Richter, Photocatalysis with solar energy at a pilot-plant scale: an overview, Appl. Catal., B, 37 (2002) 1–15.
  25. S. Zhu, T. Shi, W. Liu, S. Wei, Y. Xie, C. Fan, Y. Li, Direct determination of local structure around Fe in anatase TiO2, Physica B, 396 (2007) 177–180.
  26. X. Zhang, M. Zhou, L. Lei, Preparation of anatase TiO2 supported on alumina by different metal organic chemical deposition methods, Appl. Catal., A, 282 (2005) 285–293.
  27. M. Gharagozlou, R. Bayati, Photocatalytic characteristics of single phase Fe-doped anatase TiO2 nanoparticles sensitized with vitamin B12, Mater. Res. Bull., 61 (2015) 340–347.
  28. W.C. Hung, S.H. Fu, J.J. Tseng, H. Chu, T.H. Ko, Study on photocatalytic degradation of gaseous dichloromethane using pure and iron-doped TiO2 prepared by the sol–gel method, Chemosphere, 66 (2007) 2142–2151.
  29. R. Janes, L.J. Knightley, C.J. Harding, Structural and spectroscopy studies of iron (III) doped titania powders prepared by sol-gel synthesis and hydrothermal processing, Dyes Pigm., 62 (2004) 199–212.
  30. R. Zboril, M. Mashln, D. Petridis, Iron(III) oxides from thermal processes-synthesis, structural and magnetic properties, Mössbauer spectroscopy characterization, and applications, Chem. Mater., 14 (2002) 969–982.
  31. A.M.L. Costa, B.A. Marinkovic, N.M. Suguihiro, D.J. Smith, M.E. H.M. Da Costa, S. Paciornik, Fe-doped nanostructured titanates synthesized in a single step route, Mater. Charact., 99 (2015) 150–159.
  32. T. Gavriloaiei, D. Gavriloaiei, Determination of surface charge for metal oxides, Geologie, 54 (2008) 11–18.
  33. M. Kosmulski, Compilation of PZC and IEP of sparingly soluble metal oxides and hydroxides from literature, Adv. Colloid Interface Sci., 152 (2009) 14–25.
  34. W. Wang, P. Serp, P. Kalck, J.L. Faria, Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol-gel method, Appl. Catal., B, 56 (2005) 305–312.
  35. O. Carp, C.L. Huisman, A. Reller, A, Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem., 32 (2004) 33–177.
  36. G. Pecchi, P. Reyes, P. Sanhueza, J. Villaseñor, Photocatalytic degradation of pentachlorophenol on TiO2 sol-gel catalysts, Chemosphere, 43 (2001) 141–146.
  37. M.A. Aguado, S. Cervera-March, J. Giménez, Continuous photocatalytic treatment of mercury(II) on titania powders. Kinetics and catalyst activity, Chem. Eng. Sci., 50 (1995) 1561–1569.
  38. O. Ercan, A. Aydin, Removal of mercury, antimony, cadmium and lead from aqueous solution using 1,3,5-trithiane as an adsorbent, J. Braz. Chem. Soc., 24 (2013) 865–872.
  39. M.N. Chong, B.J. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review, Water Res., 44 (2010) 2997–3027.
  40. J.A. Navío, G. Colón, M.I. Litter, G.N. Bianco, Synthesis, characterization and photocatalytic properties of iron-doped titania semiconductors prepared from TiO2, and iron(III) acetylacetonate, J. Mol. Catal. A: Chem., 106 (1996) 267–276.
  41. M.I. Litter, J.A. Navío, Photocatalytic properties of iron-doped titania semiconductors, J. Photochem. Photobiol., A, 98 (1996) 171–181.