References
- G.G. Lenzi, C.V.B. Fávero, L.M.S. Colpini, H. Bernabe, M.L.
Baesso, S. Specchia, O.A.A. Santos, Photocatalytic reduction
of Hg2+ on TiO2 and Ag/TiO2 prepared by the sol–gel and
impregnation methods, Desalination, 270 (2011) 241–247.
- M.J. López-Muñoz, J. Aguado, A. Arencibia, R. Pascual, Mercury
removal from aqueous solutions of HgCl2 by heterogeneous
photocatalysis with TiO2, Appl. Catal., B, 104 (2011) 220–228.
- L.C. Mansur, Review of the use of mercury in historic and
current ritualistic and spiritual practices, Environ. Med., 16
(2011) 314–320.
- H. Parham, B. Zargar, R. Shiralipour, Fast and efficient removal
of mercury from water samples using magnetic iron, J. Hazard.
Mater., 205–206 (2012) 94–100.
- F. Da Pieve, M. Stankowski, C. Hogan, Electronic structure
calculations of mercury mobilization from mineral phases and
photocatalytic removal from water and the atmosphere, Sci.
Total Environ., 493 (2014) 596–605.
- B. Dou, H. Chen, Removal of toxic mercury(II) from aquatic
solutions by synthesized TiO2 nanoparticles, Desalination, 269
(2011) 260–265.
- C. Siriwong, N. Wetchakun, B. Inceesungvorn, D. Channei, T.
Samerjai, S. Phanichphant, Doped-metal oxide nanoparticles
for use as photocatalysts, Prog. Cryst. Growth Charact. Mater.,
58 (2012) 145–163.
- P.R. Gogate, A.B. Pandit, A review of imperative technologies
for wastewater treatment I: oxidation technologies at ambient
conditions, Adv. Environ. Res., 8 (2004) 501–555.
- S. Rengaraj, X.Z. Li, Enhanced photocatalytic reduction reaction
over Bi3+–TiO2 nanoparticles in presence of formic acid as a hole
scavenger, Chemosphere, 66 (2007) 930–938.
- H. Gan, G. Zhang, H. Huang, Enhanced visible-light-driven
photocatalytic inactivation of Escherichia coli by Bi2O2CO3/Bi3NbO7 composites, J. Hazard. Mater., 250–251 (2013) 131–137.
- B.K. Mutuma, G.N. Shao, W.D. Kim, H.T. Kim, Sol–gel synthesis
of mesoporous anatase–brookite and anatase–brookite–rutile
TiO2 nanoparticles and their photocatalytic properties, J.
Colloid Interface Sci., 442 (2015) 1–7.
- Z. Wan, G. Zhang, X. Wu, S. Yin, Novel visible-light-driven
Z-scheme Bi12GeO20/g-C3N4 photocatalyst: oxygen-induced
pathway of organic pollutants degradation and proton assisted
electron transfer mechanism of Cr(VI) reduction, Appl. Catal.,
B, 207 (2017) 17–26.
- Y. Zhang, F. Zhang, Z. Yang, H. Xue, D.D. Dionysiou,
Development of a new efficient visible-light-driven
photocatalyst from SnS2 and polyvinyl chloride, J. Catal., 344
(2016) 692–700.
- Y.C. Zhang, L. Yao, G. Zhang, D.D. Dionysiou, J. Li, X. Du, Onestep
hydrothermal synthesis of high-performance visible-lightdriven
SnS2/SnO2 nanoheterojunction photocatalyst for the
reduction of aqueous Cr(VI), Appl. Catal., B, 144 (2014) 730–738.
- V.N. Salomone, J.M. Meichtry, M.I. Litter, Heterogeneous
photocatalytic removal of U(VI) in the presence of formic acid:
U(III) formation, Chem. Eng. J., 270 (2015) 28–35.
- J.C. Colmenares, M.A. Aramendía, A. Marinas, J.M. Marinas,
F.J. Urbano, Synthesis, characterization and photocatalytic
activity of different metal-doped titania systems, Appl. Catal.,
A, 306 (2006) 120–127.
- S. Zhu, T. Shi, W. Liu, S. Wei, Y. Xie, C. Fan, Y. Li, Direct
determination of local structure around Fe in anatase TiO2,
Physica B, 396 (2005) 177–180.
- R.M. Mohamed, M.A. Salam, Photocatalytic reduction of
aqueous mercury(II) using multi-walled carbon nanotubes/Pd-ZnO nanocomposite, Mater. Res. Bull., 50 (2014) 85–90.
- Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar, J. He, Visible
light driven type II heterostructures and their enhanced
photocatalysis properties: a review, Nanoscale, 5 (2013)
8326–8350.
- J. Zhu, W. Zheng, B. He, J. Zhang, M. Anpo, Characterization of
Fe–TiO2 photocatalysts synthesized by hydrothermal method
and their photocatalytic reactivity for photodegradation of XRG
dye diluted in water, J. Mol. Catal. A: Chem., 216 (2004) 35–43.
- Joint Committee on Powder Diffraction Standards, International
Centre for Diffraction Data, PCPDFWIN v.130, 1997.
- I. Ganesh, P.K. Kumar, A.K. Gupta, P.S.C. Sekhar, K. Radha,
G. Padmanabham, G. Sundararajan, Preparation and
characterization of Fe-doped TiO2 powders for solar light
response and photocatalytic applications, Process. Appl.
Ceram., 6 (2012) 21–36.
- J.M. Herrmann, C. Guillard, Photocatalytic degradation of
pesticides in agricultural used waters, Chemistry, 3 (2000)
417–422.
- S. Malato, J. Blanco, A. Vidal, C. Richter, Photocatalysis with
solar energy at a pilot-plant scale: an overview, Appl. Catal., B,
37 (2002) 1–15.
- S. Zhu, T. Shi, W. Liu, S. Wei, Y. Xie, C. Fan, Y. Li, Direct
determination of local structure around Fe in anatase TiO2,
Physica B, 396 (2007) 177–180.
- X. Zhang, M. Zhou, L. Lei, Preparation of anatase TiO2 supported on alumina by different metal organic chemical
deposition methods, Appl. Catal., A, 282 (2005) 285–293.
- M. Gharagozlou, R. Bayati, Photocatalytic characteristics of
single phase Fe-doped anatase TiO2 nanoparticles sensitized
with vitamin B12, Mater. Res. Bull., 61 (2015) 340–347.
- W.C. Hung, S.H. Fu, J.J. Tseng, H. Chu, T.H. Ko, Study on
photocatalytic degradation of gaseous dichloromethane using
pure and iron-doped TiO2 prepared by the sol–gel method,
Chemosphere, 66 (2007) 2142–2151.
- R. Janes, L.J. Knightley, C.J. Harding, Structural and
spectroscopy studies of iron (III) doped titania powders
prepared by sol-gel synthesis and hydrothermal processing,
Dyes Pigm., 62 (2004) 199–212.
- R. Zboril, M. Mashln, D. Petridis, Iron(III) oxides from thermal
processes-synthesis, structural and magnetic properties,
Mössbauer spectroscopy characterization, and applications,
Chem. Mater., 14 (2002) 969–982.
- A.M.L. Costa, B.A. Marinkovic, N.M. Suguihiro, D.J. Smith,
M.E. H.M. Da Costa, S. Paciornik, Fe-doped nanostructured
titanates synthesized in a single step route, Mater. Charact., 99
(2015) 150–159.
- T. Gavriloaiei, D. Gavriloaiei, Determination of surface charge
for metal oxides, Geologie, 54 (2008) 11–18.
- M. Kosmulski, Compilation of PZC and IEP of sparingly soluble
metal oxides and hydroxides from literature, Adv. Colloid
Interface Sci., 152 (2009) 14–25.
- W. Wang, P. Serp, P. Kalck, J.L. Faria, Photocatalytic degradation
of phenol on MWNT and titania composite catalysts prepared
by a modified sol-gel method, Appl. Catal., B, 56 (2005) 305–312.
- O. Carp, C.L. Huisman, A. Reller, A, Photoinduced reactivity of
titanium dioxide, Prog. Solid State Chem., 32 (2004) 33–177.
- G. Pecchi, P. Reyes, P. Sanhueza, J. Villaseñor, Photocatalytic
degradation of pentachlorophenol on TiO2 sol-gel catalysts,
Chemosphere, 43 (2001) 141–146.
- M.A. Aguado, S. Cervera-March, J. Giménez, Continuous
photocatalytic treatment of mercury(II) on titania powders.
Kinetics and catalyst activity, Chem. Eng. Sci., 50 (1995)
1561–1569.
- O. Ercan, A. Aydin, Removal of mercury, antimony, cadmium
and lead from aqueous solution using 1,3,5-trithiane as an
adsorbent, J. Braz. Chem. Soc., 24 (2013) 865–872.
- M.N. Chong, B.J. Jin, C.W.K. Chow, C. Saint, Recent
developments in photocatalytic water treatment technology: a
review, Water Res., 44 (2010) 2997–3027.
- J.A. Navío, G. Colón, M.I. Litter, G.N. Bianco, Synthesis,
characterization and photocatalytic properties of iron-doped
titania semiconductors prepared from TiO2, and iron(III)
acetylacetonate, J. Mol. Catal. A: Chem., 106 (1996) 267–276.
- M.I. Litter, J.A. Navío, Photocatalytic properties of iron-doped
titania semiconductors, J. Photochem. Photobiol., A, 98 (1996)
171–181.