References
- Y. Wang, Y. Li, G. Liu, D. Wang, G. Jiang, Y. Cai, Elemental
mercury in natural waters: occurrence and determination of
particulate Hg(0), Environ. Sci. Technol., 49 (2015) 9742–9749.
- K. Leopold, M. Foulkes, P. Worsfold, Methods for the
determination and speciation of mercury in natural waters—a
review, Anal. Chim. Acta, 663 (2010) 127–138.
- L. Ling, Y. Zhao, J. Du, D. Xiao, An optical sensor for mercuric
ion based on immobilization of Rhodamine B derivative in PVC
membrane, Talanta, 91 (2012) 65–71.
- Y. Yu, L.R. Lin, K.B. Yang, X. Zhong, R.B. Huang, L.S. Zheng,
p-Dimethylaminobenzaldehyde thiosemicarbazone: a simple
novel selective and sensitive fluorescent sensor for mercury(II)
in aqueous solution, Talanta, 69 (2006) 103–106.
- J. Chamier, J. Leaner, A.M. Crouch, Photoelectrochemical
determination of inorganic mercury in aqueous solutions, Anal.
Chim. Acta, 661 (2010) 91–96.
- F. Yan, D. Kong, Y. Luo, Q. Ye, J. He, X. Guo, L. Chen, Carbon dots
serve as an effective probe for the quantitative determination
and for intracellular imaging of mercury(II), Microchim. Acta,
183 (2016) 1611–1618.
- Q. Ye, F. Yan, Y. Luo, Y. Wang, X. Zhou, L. Chen, Formation of
N, S-codoped fluorescent carbon dots from biomass and their
application for the selective detection of mercury and iron ion,
Spectrochim. Acta A, 173 (2017) 854–862.
- N. Horzum, D. Mete, E. Karakuş, M. Üçüncü, M. Emrullahoğlu,
M.M. Demir, ChemistrySelect, 1 (2016) 896–900.
- J. Zhang, Y. Zhou, W. Hu, L. Zhang, Q. Huang, T. Ma, Highly
selective fluorescence enhancement chemosensor for Hg2+ based
on rhodamine and its application in living cells and aqueous
media, Sens. Actuators B, 183 (2013) 290–296.
- H. Xu, K. Zhang, Q. Liu, Y. Liu, M. Xie, Visual and fluorescent
detection of mercury ions by using a dually emissive ratiometric
nanohybrid containing carbon dots and CdTe quantum dots,
Microchim. Acta, 184 (2017) 1199–1206.
- R. Zhang, F. Yan, Y. Huang, D. Kong, Q. Ye, J. Xu, L. Chen,
Rhodamine-based ratiometric fluorescent probes based on
excitation energy transfer mechanisms: construction and
applications in ratiometric sensing, RSC Adv., 56 (2016)
50732–50760.
- J. Kuchlyan, S. Basak, D. Dutta, A.K. Das, D. Mal, N. Sarkar,
A new rhodamine derived fluorescent sensor: detection of Hg2+
at cellular level, Chem. Phys. Lett., 673 (2017) 84–88.
- S. Rouhani, S. Haghgoo, A novel fluorescence nanosensor based
on 1,8-naphthalimide-thiophene doped silica nanoparticles,
and its application to the determination of methamphetamine,
Sens. Actuators B, 209 (2015) 957–965.
- S. Rouhani, F. Nahavandifard, Molecular imprinting-based
fluorescent optosensor using a polymerizable 1,8-naphthalimide
dye as a florescence functional monomer, Sens. Actuators B, 197
(2014) 185–192.
- P. Alaei, S. Rouhani, K. Gharanjig, A dual colorimetric
and fluorometric anion sensor based on polymerizable 1,
8-naphthalimide dye, Prog. Color Colorants Coat., 6 (2013)
87–96.
- S. Rouhani, S. Salimi, K. Haghbeen, Development of optical pH
sensors based on derivatives of hydroxyazobenzene, and the
extended linear dynamic range using mixture of dyes, Dyes
Pigm., 77 (2008) 363–368.
- B.N. Ahamed, P. Ghosh, An integrated system of pyrene and
rhodamine-6G for selective colorimetric and fluorometric
sensing of mercury(II), Inorg. Chim. Acta, 372 (2011) 100–107.
- L. Tang, F. Li, M. Liu, R. Nandhakumar, Single sensor for two
metal ions: colorimetric recognition of Cu2+ and fluorescent
recognition of Hg2+, Spectrochim. Acta A, 78 (2011) 1168–1172.
- J. Zhang, L. Zhang, Y. Zhou, T. Ma, J. Niu, A highly selective
fluorescent probe for the detection of palladium(II) ion in cells
and aqueous media, Microchim. Acta, 180 (2013) 211–217.