References

  1. D. Vendrell, J.L. Balcázar, I. Ruiz-Zarzuela, I. de Blas, O. Gironés, J.L. Múzquiz, Lactococcus garvieae in fish: a review, Comp. Immunol. Microbiol. Infect. Dis., 29 (2006) 177–198.
  2. B.R. Mohanty, P.K. Sahoo, Edward siellosis in fish: a brief review, J. Biosci., 32 (2007) 1331–1344.
  3. Y. Zhang, C. Rong, Y. Song, Y. Wang, J. Pei, X. Tang, R. Zhang, K. Yu, Oxidation of the antibacterial agent norfloxacin during sodium hypochlorite disinfection of marine culture water, Chemosphere, 182 (2017) 245–254.
  4. L.E. Fleming, K. Broad, A. Clement, E. Dewailly, S. Elmir, A. Knap, S.A. Pomponi, S. Smith, H.S. Gabriele, P. Walsh, Oceans and human health: Emerging public health risks in the marine environment, Mar. Pollut. Bull., 53 (2006) 545–560.
  5. D. Rubio, J.F. Casanueva, E. Nebot, Improving UV seawater disinfection with immobilized TiO2: Study of the viability of photocatalysis (UV254/TiO2) as seawater disinfection technology, J. Photochem. Photobiol. A: Chem., 271 (2013) 16–23.
  6. D. Boudjellaba, J. Dron, G. Revenko, C. Démelas, J.-L. Boudenne, Chlorination by-product concentration levels in seawater and fish of an industrialised bay (Gulf of Fos, France) exposed to multiple chlorinated effluents, Sci. Total Environ., 541 (2016) 391–399.
  7. W.A.M. Hijnen, E.F. Beerendonk, G.J. Medema, Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo) cysts in water: A review, Water Res., 40 (2006) 3–22.
  8. Q. Jiang, Y. Jie, Y. Han, C. Gao, H. Zhu, M. Willander, X. Zhang, X. Cao, Self-powered electrochemical water treatment system for sterilization and algae removal using water wave energy, Nano Energy, 18 (2015) 81–88.
  9. T. McCollin, G. Quilez-Badia, K.D. Josefsen, M.E. Gill, E. Mesbahi, C.L.J. Frid, Ship board testing of a deoxygenation ballast water treatment, Mar. Pollut. Bull., 54 (2007) 1170–1178.
  10. B. Werschkun, Y. Sommer, B. Banerji, Disinfection by-products in ballast water treatment: An evaluation of regulatory data, Water Res., 46 (2012) 4884–4901.
  11. T. Tanaka, M. Shimoda, N. Shionoiri, M. Hosokawa, T. Taguchi, H. Wake, T. Matsunaga, Electrochemical disinfection of fish pathogens in seawater without the production of a lethal concentration of chlorine using a flow reactor, J. Biosci. Bioeng., 116 (2013) 480–484.
  12. M. Mascia, A. Vacca, S. Palmas, Fixed bed reactors with three dimensional electrodes for electrochemical treatment of waters for disinfection, Chem. Eng. J., 211–212 (2012) 479–487.
  13. H. Särkkä, M. Vepsäläinen, M. Pulliainen, M. Sillanpää, Electrochemical inactivation of paper mill bacteria with mixed metal oxide electrode, J. Hazard. Mater., 156 (2008) 208–213.
  14. G. Patermarakis, E. Fountoukidis, Disinfection of water by electrochemical treatment, Water Res., 24 (1990) 1491–1496.
  15. S. Nakasono, N. Nakamura, K. Sode, T. Matsunaga, Electrochemical disinfection of marine bacteria attached on a plastic electrode, Bioelectrochem. Bioenerg., 27 (1992) 191–198.
  16. A. Kraft, Doped Diamond: A Compact Review on a New, Versatile Electrode Material, Int. J. Electrochem. Sci., 2 (2007) 355–385.
  17. M. Rajab, C. Heim, T. Letzel, J.E. Drewes, B. Helmreich, Electrochemical disinfection using boron-doped diamond electrode- the synergetic effects of in situ ozone and free chlorine generation, Chemosphere, 121 (2015) 47–53.
  18. C.E. Schaefer, C. Andaya, A. Urtiaga, Assessment of disinfection and by-product formation during electrochemical treatment of surface water using a Ti/IrO2 anode, Chem. Eng. J., 264 (2015) 411–416.
  19. T. Matsunaga, S. Nakasono, T. Takamuku, J.G. Burgess, N. Nakamura, K. Sode, Disinfection of drinking water by using a novel electrochemical reactor employing carbon-cloth electrodes, Appl. Environ. Microbiol., 58 (1992) 686–689.
  20. J. Saha, S.K. Gupta, A novel electro-chlorinator using low cost graphite electrode for drinking water disinfection, Ionics, 23 (2017) 1903–1913.
  21. K. Shang, Z. Qiao, B. Sun, X. Fan, S. Ai, An efficient electrochemical disinfection of E. coli and S. aureus in drinking water using ferrocene–PAMAM–multiwalled carbon nanotubes– chitosan nanocomposite modified pyrolytic graphite electrode, J. Solid State Electrochem., 17 (2013) 1685–1691.
  22. A.F. Ismail, L.I.B. David, A review on the latest development of carbon membranes for gas separation, J. Membr. Sci., 193 (2001) 1–18.
  23. C. Song, T. Wang, Y. Pan, J. Qiu, Preparation of coal-based microfiltration carbon membrane and application in oily wastewater treatment, Sep. Purif. Technol., 51 (2006) 80–84.
  24. C. Li, C. Song, P. Tao, M. Sun, Z. Pan, T. Wang, M. Shao, Enhanced separation performance of coal-based carbon membranes coupled with an electric field for oily wastewater treatment, Sep. Purif. Technol., 168 (2016) 47–56.
  25. W. Lee, P. Westerhoff, X. Yang, C. Shang, Comparison of colorimetric and membrane introduction mass spectrometry techniques for chloramine analysis, War. Res., 41 (2007) 3097–3102.
  26. S. Triantafyllidou, D. Lytle, C. Muhlen, J. Swertfeger, Copper-silver ionization at a US hospital: Interaction of treated drinking water with plumbing materials, aesthetics and other considerations, Water Res., 102 (2016) 1–10.
  27. M. Bai, Q. Zheng, Y. Tian, Z. Zhang, C. Chen, C. Cheng, X. Meng, Inactivation of invasive marine species in the process of conveying ballast water using OH based on a strong ionization discharge, Water Res., 96 (2016) 217–224.
  28. S. Cotillas, J. Llanos, K. Castro-Ríos, G. Taborda-Ocampo, M.A. Rodrigo, P. Canizares, Synergistic integration of sonochemical and electrochemical disinfection with DSA anodes, Chemosphere, 163 (2016) 562–568.
  29. M. Deborde, U. vonGunten, Reactions of chlorine with inorganic and organic compounds during water treatment— Kinetics and mechanisms: A critical review, Water Res., 42 (2008) 13–51.
  30. S.N. Hussain, H.M.A. Asghar, H. Sattar, N.W. Brown, E.P.L. Roberts, Free chlorine formation during electrochemical regeneration of a graphite intercalation compound adsorbent used for wastewater treatment, J. Appl. Electrochem., 45 (2015) 611–621.
  31. R.A.A. Carter, C.A. Joll, Occurrence and formation of disinfection by-products in the swimming pool environment: A critical review, J. Environ. Sci., 58 (2017) 19–50.
  32. J. Llanos, S. Cotillas, P. Cañizares, M.A. Rodrigo, Conductive diamond sono-electrochemical disinfection (CDSED) for municipal wastewater reclamation, Ultrason. Sonochem., 22 (2015) 493–498.
  33. M. Métayer, O.V. Grigorchuck, V.V. Nikonenko, D. Langevin, M. Legras, L. Lebrun, V.A. Shaposhnik, Facilitated transport of non-electrolytes through ion-exchange membranes: concentration polarization and rate-determining stage in a tubular membrane system, Russ. J. Electrochem., 38 (2002) 873–883.
  34. Y.M. Hao, H. Nakajima, H. Yoshizumi, A. Inada, K. Sasaki, K. Ito, Characterization of an electrochemical hydrogen pump with internal humidifier and dead-end anode channel, Int. J. Hydrogen Energy, 41 (2016) 13879–13887.
  35. S. Gao, M. Du, J. Tian, J. Yang, J. Yang, F. Ma, J. Nan, Effects of chloride ions on electro-coagulation–flotation process with aluminum electrodes for algae removal, J. Hazard. Mater., 182 (2010) 827–834.
  36. E. Lacasa, E. Tsolaki, Z. Sbokou, M.A. Rodrigo, D. Mantzavinos, E. Diamadopoulos, Electrochemical disinfection of simulated ballast water on conductive diamond electrodes, Chem. Eng. J., 223 (2013) 516–523.
  37. M. Dey, S.W. Joo, Joule heating induced interfacial instabilities in free-surface electro-osmotic flows, Int. J. Heat Mass Transfer., 87 (2015) 295–302.
  38. H.M. Huotari, G. Trägårdh, I.H. Huisman, Cross flow membrane filtration enhanced by an external DC electric field: A review, Inst. Chem. Eng., 77 (1999) 461–468.