References

  1. S.Y. Guvenc, The optimization and modeling of PCP wastewater using response surface methodology by electro coagulation process, Desal. Water Treat., 63 (2017) 34–42.
  2. E. Ofir, A. Brenner, K. Muuler, V. Gitis, Boron removal from seawater by electro-chemical treatment as part of water desalination, Desal. Water Treat., 31 (2011) 102–106.
  3. Y. Angar, N.E. Djelali, S. Kebbouche-Gana, Contribution to the study of the ammonium electro-oxidation in aqueous solution, Desal. Water Treat., 63 (2017) 212–220.
  4. L. Ben Mansour, Y. Ben Abdou, S. Gabsi, Effect of some parameters on removal process of nickel by electro flotation, Water Envi. Res. J., 2 (2001) 51–58.
  5. B. Merzouk, M. Yakoubi, I. Zongo, J.P. Leclerc, G. Paternotte, S. Pontvianne, F. Lapicque, Effect of modification of textile wastewater composition on electrocoagulation efficiency, Desalination, 275 (2011) 181–186.
  6. A. Anissa, L. Ridha, H. Amor, Feasibility evaluation of combined electro coagulation/adsorption process by optimizing operating parameters removal for textile wastewater treatment, Desal. Water Treat., 60 (2017) 78–87.
  7. L. Ben Mansour, S. Chalbi, Removal of oil from oil/water emulsions using electro flotation process, J. Appl. Electrochem., 36 (2006) 577–581.
  8. Bukhari, Investigation of the electro-coagulation treatment process for the removal of total suspended solids and turbidity from municipal wastewater, Bioresour. Technol., 99 (2008) 914–921.
  9. H. Martínez, E. Brillas, Electrochemical alternatives for drinking water disinfection, Angewandte Chemie International Edition, 47 (2008) 1998–2005.
  10. I. Sirés, E. Brillas, M.A. Oturan, M.A. Rodrigo, M. Panizza, Electrochemical advanced oxidation processes: today and tomorrow, A review, Environ. Sci. Pollut. Res. Int., 21 (2014) 8336–8367.
  11. M. Kotti, I. Ksentini, L. Ben Mansour, Impact of anionic surfactants on oxygen transfer rate in the electro flotation process. Desal. Water Treat., 36 (2011) 34–40.
  12. N. Moulai, M.M. Tir, Coupling flocculation with electro flotation for waste oil/water emulsion treatment. Optimization of the operating conditions, Desalination, 161 (2004) 115–121.
  13. F.E. Elmore, A process for separating certain constituents of subdivided ores and like substances, and apparatus therefore, Br. Patent, 13 (1905).
  14. D. Ghernaout, M.W. Naceura, B. Ghernaout, A review of electro coagulation as a promising coagulation process for improved organic and in organic matters removal by electrophoresis and electro flotation, Desal. Water Treat., 28 (2011) 287–320.
  15. R. Duangkamol, W. Porntip, L. Apiradee, C. Tawatchai, P. Prasert, Influence of salinity on bubble size distribution and gas–liquid mass transfer in airlift contactors, Chem. Eng. J., 141 (2008) 222–232.
  16. A.G. Saba, J.Y. Rafei, S.S. Suhaeb, Experimental study of volumetric mass transfer coefficients in slurry bubble column reactor, J. Chem. Eng. Process Tech, 3 (2012) 136–139.
  17. M. Labbafi, R.K. Thakur, C. Vial, G. Djelveh, Development of an on-line optical method for assment of the bubble size and morphology in aerated food products, Food Chem., 102 (2007) 454–465.
  18. T. Moucha, V. Linek, E. Prokopova, Gas hold-up, mixing time and gas–liquid volumetric mass transfer coefficient of various multiple-impeller configurations: Rushton turbine, pitched blade and techmix impeller and their combinations, Chem. Eng. Sci., 2 (2003) 1839–1846.
  19. W.K. Lewis, W.G. Whitman, Principles of gas absorption, Ind. Eng. Chem., 16 (1924) 1215–1220.
  20. J.M.T. Vasconcelos, J.M.L. Rodrigues, S.C.P. Orvalho, S.S. Alves, R.L. Mendes, A. Reis, Effect of contaminants on mass transfer coefficients in bubble column and airlift contactors, Chem. Eng. Sci., 58 (2003) 1431–1440.
  21. L. Han, M.H. Al-Dahhan, Gas–liquid mass transfer in a high pressure bubble column reactor with different sparger designs, Chem. Eng. Sci., 62 (2007) 131–139.
  22. G. Chen, Electrochemical technologies in waste water treatment, Sep. Purif. Technol., 38 (2004) 11–41.
  23. W.D. Deckwer, Bubble Column Reactors, John Wiley, New York, 1992.
  24. B. Giorgio, I. Fabio, Comprehensive experimental investigation of counter-current bubble column hydrodynamics: Holdup, flow regime transition, bubble size distributions and local flow properties, Chem. Eng. Sci., 146 (2016) 259–290.
  25. N. Kantarci, F. Borak, K.O. Ulgen, Bubble column reactors, J. Process Biochem., 40 (2005) 2263–2283.
  26. K. Sentini, K. Hmidi, N. Hajlaoui, L. Ben Mansour, Hydrodynamic study of an electro flotation column operating in continuous mode, I.J.I.R.T., 1 (2014) 109–112.
  27. A. Maryam, R.M. Mohammad, M. Navid, Effect of surface contaminants on oxygen transfer in bubble column reactors, Biochem. Eng. J., 49 (2010) 351–360.
  28. I. Ksentini, M. Kotti, L. Ben Mansour, Effect of liquid phase physico chemical characteristics on hydrodynamics of an electro flotation column, Desal. Water Treat., 52 (2014) 3347– 3354.
  29. S.E. Burns, S. Yiacoumi, C. Tsouris, Microbubble generation for environmental and industrial separations, Sep. Purif. Technol., 11 (1997) 221–232.
  30. J.M. Chern, S.R. Chou, C.S. Shang, Effects of impurities on oxygen transfer rates in diffused aeration systems, Water Res., 35 (2001) 3041–3048.
  31. P. Painmanakul, K. Loubière, G. Hébrard, M. Mietton-Peuchot, M. Roustan, Effect of surfactants on liquid-side mass transfer coefficients, Chem. Eng. J., 60 (2005) 6480–6491.
  32. J.-H. Chen, Y.-C. Hsu, Y.-F. Chen, C.-C. Lin, Application of gas-inducing reactor to obtain high oxygen dissolution in aeration process, Water Res., 37 (2003) 2919–2928.
  33. A. Deimling, B.M. Karandikar, Y.T. Shah, N.L. Carr, Solubility and mass transfer of CO and H2 in Fischer – Tropsch liquids and slurries, Chem. Eng. J., 29 (1984) 127–140.