References

  1. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95 (1995) 69–96.
  2. J.M. Herrmann, Photocatalysis fundamentals revisited to avoid several misconceptions, Appl. Catal. B: Environ., 99 (2010) 461–468.
  3. T. Ahmed, S. Imdad, K. Yaldram, N.M. Butt, A. Pervez, Emerging nanotechnology-based methods for water purification: a review, Desal. Water Treat., 52 (2014) 4089–4101.
  4. A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C: Photochem. Rev., 1 (2000) 1–21.
  5. U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems, J. Photochem. Photobiol. C: Photochem. Rev., 9 (2008) 1–12.
  6. K. Zimny, T. Roques-Carmes, C. Carteret, M.J. Stébé, J.L. Blin, Synthesis and photoactivity of ordered mesoporous titania with a semicrystalline framework, J. Phys. Chem. C, 116 (2012) 6585–6594.
  7. J.L. Blin, M.J. Stébé, T. Roques-Carmes, Use of ordered mesoporous titania with semi-crystalline framework as photocatalyst, Colloids Surf. A, 407 (2012) 177–185.
  8. S. Pazokifard, S.M. Mirabedini, M. Esfandeh, M. Mohseni, Z. Ranjbar, Silane grafting of TiO2 nanoparticles: dispersibility and photoactivity in aqueous solutions, Surf. Interface Anal., 44 (2012) 41–47.
  9. C. Wang, H. Mao, C. Wang, S. Fu, Dispersibility and hydrophobicity analysis of titanium dioxide nanoparticles grafted with silane coupling agent, Ind. Eng. Chem. Res., 50 (2011) 11930–11934.
  10. O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Prog. Solid State Chem., 32 (2004) 33–177.
  11. M.F.J. Dijkstra, H.J. Panneman, J.G.M. Winkelman, J.J. Kelly, A.A.C.M. Beenackers, Modeling the photocatalytic degradation of formic acid in a reactor with immobilized catalyst, Chem. Eng. Sci., 57 (2002) 4895–4907.
  12. R.R. Sheha, A.H. Harb, I.E.T. El-sayed, H.H. Someda, Removal of ethylenediaminetetraacetic acid and its cobalt complex by layered double hydroxide/titanium dioxide from aqueous solution, Desal. Water Treat., 57 (2016) 16466–16472.
  13. M.N. Chong, B. Jin, C.W. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: A review, Water Res., 44 (2010) 2997–3027.
  14. E. Rossetto, D.I. Petkowicz, J.H.Z. dos Santos, S.B.C. Pergher, F.G. Penha, Bentonites impregnated with TiO2 for photodegradation of methylene blue, Appl. Clay Sci., 48 (2010) 602–606.
  15. Z. Sun, Y. Chen, Q. Ke, Y. Yang, J. Yuan, Photocatalytic degradation of a cationic azo dye by TiO2/bentonite nanocomposite, J. Photochem. Photobiol. A: Chem., 149 (2002) 169–174.
  16. F.F. Cai, Z.H. Yang, J. Huang, G.M. Zeng, L.K. Wang, J. Yang, Application of cetyltrimethylammonium bromide bentonite–titanium dioxide photocatalysis technology for pretreatment of aging leachate, J. Hazard. Mater., 275 (2014) 63–71.
  17. Z.M. Xie Chen, Y.Z. Dai, Preparation of TiO2/sepiolite photocatalyst and its application to printing and dyeing wastewater treatment, Environ. Sci. Technol., 32 (2009) 123–127.
  18. D. Karamanis, A.N. Okte, E. Vardoulakis, T. Vaimakis, Water vapor adsorption and photocatalytic pollutant degradation with TiO2-sepiolite nanocomposites, Appl. Clay Sci., 53 (2011) 181–187.
  19. I. Illisz, A. Dombi, K. Mogyorosi, I. Dekany, Photocatalytic water treatment with different TiO2 nanoparticles and hydrophilic/ hydrophobic layer silicate adsorbents, Colloids Surf. A, 230 (2004) 89–97.
  20. M.N. Chong, V. Vimonses, S. Lei, B. Jin, C. Chow, C. Saint, Synthesis and characterization of novel titania impregnated kaolinite nano-photocatalyst, Micropor. Mesopor. Mater., 117 (2009) 233–242.
  21. D. Kibanova, M. Trejo, H. Destaillats, J. Cervini-Silva, Synthesis of hectorite-TiO2 and kaolinite-TiO2 nanocomposites with photocatalytic activity for the degradation of model air pollutants, Appl. Clay Sci., 42 (2009) 563–568.
  22. J. Henych, V. Stengl, Feasible synthesis of TiO2 deposited on kaolin for photocatalytic applications, Clays Clay Miner., 61 (2013) 165–176.
  23. L. Bouna, B. Rhouta, F. Maury, A. Jada, F. Senocq, M.C. Lafont, Photocatalytic activity of TiO2/stevensite nanocomposites for the removal of orange G from aqueous solutions, Clay Miner., 49 (2014) 417–428.
  24. T. Kaneko, M. Fujii, T. Kodama, Y. Kitayama, Synthesis of titania pillared mica in aqueous solution of acetic acid, J. Porous Mater., 8 (2001) 99–109.
  25. L. Bouna, B. Rhouta, M. Amjoud, F. Maury, M.C. Lafont, A. Jada, F. Senocq, L. Daoudi, Synthesis, characterization and photocatalytic activity of TiO2 supported natural palygorskite microfibers, Appl. Clay Sci., 52 (2011) 301–311.
  26. B. Ohtani, Y. Ogawa, S. Nishimoto, Photocatalytic activity of amorphous-anatase mixture of titanium(IV) oxide particles suspended in aqueous solutions, J. Phys. Chem., B101 (1997) 3746–3752.
  27. D. Beydoun, R. Amal, G. Low, S. McEvoy, Role of nanoparticles in photocatalysis, J. Nanoparticle Res., 1 (1999) 439–458.
  28. T. Monecke, S. Kohler, R. Kleeberg, P.M. Herzig, J.B. Gemmell, Quantitative phase-analysis by the Rietveld method using X-ray powder-diffraction data: application to the study of alteration halos associated with volcanic-rock-hosted massive sulfide deposits, Can. Mineral., 39 (2001) 1617–1633.
  29. L.B. Mc Cusker, R.B. Von Dreele, D.E. Cox, D. Louer, P. Scardi, Rietveld refinement guidelines, J. Appl. Cryst., 32 (1999) 36–50.
  30. D.L. Bish, S.A. Howard, Quantitative phase analysis using the Rietveld method, J. Appl. Cryst., 21 (1988) 86–91.
  31. K. Ufer, H. Stanjek, G. Roth, R. Dohrmann, R. Kleeberg, S. Kaufhold, Quantitative phase analysis of bentonites by the Rietveld method, Clays Clay Miner., 56 (2008) 272–282.
  32. D. Dermatas, M.S. Dadachov, Rietveld quantification of montmorillonites in lead-contaminated soils, Appl. Clay Sci., 23 (2003) 245–255.
  33. A.G. De La Torre, S. Bruque, M.A.G. Aranda, Rietveld quantitative amorphous content analysis, J. Appl. Cryst., 34 (2001) 196–202.
  34. T.C. Santini, Application of the Rietveld refinement method for quantification of mineral concentrations in bauxite residues (alumina refining tailings), Int. J. Miner. Process., 139 (2015) 1–10.
  35. Y. Kitayama, T. Kodama, M. Abe, H. Shimotsuma, Y. Matsuda, Synthesis of titania pillared saponite in aqueous solution of acetic acid, J. Porous Mater., 5 (1998) 121–126.
  36. C. Ooka, H. Yoshida, K. Suzuki, T. Hattori, Highly hydrophobic TiO2 pillared clay for photocatalytic degradation of organic compounds in water, Microporous Mesoporous Mater., 67 (2004) 143–150.
  37. K.I. Shimizu, T. Kaneko, T. Fujishima, T. Kodama, H. Yoshida, Y. Kitayama, Selective oxidation of liquid hydrocarbons over photoirradiated TiO2 pillared clays, Appl. Catal. A, 225 (2002) 185–191.
  38. M. Kassir, Ph.D. Thesis, University of Lorraine, France, 2013.
  39. M. Yuan, J. Zhang, S. Yan, G. Luo, Q. Xu, X. Wang, C. Li, Effect of Nd2O3 addition on the surface phase of TiO2 and photocatalytic activity studied by UV Raman spectroscopy, J. Alloys Compd., 509 (2011) 6227–6235.
  40. H. Lin, C.P. Huang, W. Li, C. Ni, S. Ismat Shah, Y.H. Tseng, Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol, Appl. Catal. B: Environ., 68 (2006) 1–11.
  41. M. Kassir, T. Roques-Carmes, T. Hamieh, J. Toufaily, M. Akil, O. Barres, F. Villiéras, Improvement of the photocatalytic activity of TiO2 induced by organic pollutant enrichment at the surface of the organografted catalyst, Colloids Surf. A, 485 (2015) 73–83.
  42. Z. Bouberka, K.A. Benabbou, A. Khenifi, U. Maschke, Degradation by irradiation of an acid orange 7 on colloidal TiO2/(LDHs), J. Photochem. Photobiol. A: Chem., 275 (2014) 21–29.
  43. C. Leodopoulos, D. Doulia, K. Gimouhopoulos, T.M. Triantis, Single and simultaneous adsorption of methyl orange and humic acid onto bentonite, Appl. Clay Sci., 70 (2012) 84–90.
  44. K. Inumaru, M. Murashima, T. Kasahara, S. Yamanaka, Enhanced photocatalytic decomposition of 4-nonylphenol by surface-organografted TiO2: a combination of molecular selective adsorption and photocatalysis, Appl. Catal. B., 52 (2004) 275–280.
  45. T. Sakai, A. Da Loves, T. Okada, S. Mishima, Titania/CnTAB nanoskeleton as adsorbent and photocatalyst for removal of alkylphenols dissolved in water, J. Hazard. Mater., 248 (2013) 487–495.
  46. Y.J. Zhang, L.C. Liu, D.P. Chen, Synthesis of CdS/bentonite nanocomposite powders for H2 production by photocatalytic decomposition of water, Powder Technol., 241 (2013) 7–11.
  47. V. Rakic, N.Rajic, A. Dakovic, A. Auroux, The adsorption of salicylic acid and atenolol from aqueous solutions onto natural zeolites and clays: clinoptilolite, bentonite and kaolin, Micropor. Mesopor. Mater., 166 (2013) 185–194.