References

  1. S.S. Adav, D.J. Lee, K.Y. Show, J.H. Tay, Aerobic granular sludge: recent advances, Biotechnol. Adv., 26 (2008) 411–423.
  2. Y. Liu, J.H. Tay, The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge, Water Res., 36 (2002) 1653–1665.
  3. Y. Lv, C.L. Wan, D.J. Lee, X. Liu, J.H. Tay, Microbial communities of aerobic granules: granulation mechanisms, Bioresour. Technol., 169 (2014) 344–351.
  4. J.J. Beun, A. Hendriks, M.C.M van Loosdrecht, E. Morgenroth, P.A Wilderer, J.J. Heijnen, Aerobic granulation in sequencing batch reactor, Water Res., 33 (1999) 2283–2290.
  5. S.K. Toh, J.H. Tay, B.Y.P. Moy, V. Ivanov, S.T.L Tay, Size-effect on the physical characteristics of the aerobic granule in a SBR, Appl. Microbiol. Biotechnol., 60 (2003) 687–695.
  6. Y. Liu, J.H. Tay, State of the art of biogranulation technology for wastewater treatment, Biotechnol. Adv., 22 (2004) 533– 563.
  7. B.S. McSwain, R.L Irvine, P.A.Wilderer, The influence of settling time on the formation of aerobic granules, Wat. Sci. Tech., 50 (2004) 195–202.
  8. P. Dangcong, N. Bernet, J.P. Delgenes, R. Moletta, Aerobic granular sludge – a case report, Water Res., 33 (1999) 890–893.
  9. K. Mishima, M. Nakamura, Self-immobilization of aerobic activated sludge – a pilot study of the aerobic upflow sludge blanket process in municipal sewage treatment, Wat. Sci. Tech., 23 (1991) 981–990.
  10. Y. Chen, W.J. Jiang, D.T Liang, J.H Tay, Aerobic granulation under the combined hydraulic and loading selection pressures, Bioresour. Technol., 99 (2008) 7444–7449.
  11. X. Chen, L. Yuan, W. Lu, Y. Li, P. Liu, K. Nie, Cultivation of aerobic granular sludge in a conventional, continuous flow, completely mixed activated sludge system, Front. Environ. Sci. Eng., 9 (2015) 324–333.
  12. S.D. Weber, W. Ludwig, K.H. Schleifer, J. Fried, Microbial composition and structure of aerobic granular sewage biofilms, Appl. Environ. Microbiol., 73 (2007) 6233–6240.
  13. J. Li, L., Ma, Su. Wei, H. Horn, Aerobic granules dwelling vorticella and rotifers in an SBR fed with domestic wastewater, Sep. Purif. Technol., 110 (2013) 127–131.
  14. C. Wan, D.J. Lee, X. Yang, Y. Wang, X. Wang, X. Liu, Calcium precipitate induced aerobic granulation, Bioresour. Technol., 176 (2015) 32–37.
  15. W. Foissner, H. Blatterer, H. Berger, F. Kohmann, Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems - Band I: Cyrtophorida, Oligotrichida, Hypotrichida, Colpodea. Informationsberichte des Bayer. Landesamtes für Wasserwirtschaft, München, 1991.
  16. W. Foissner, H. Berger, F. Kohmann, Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems - Band II: Peritricha, Heterotrichida, Odontostomatida. Informationsberichte des Bayer. Landesamtes für Wasserwirtschaft, München, 1992.
  17. W. Foissner, H. Berger, F. Kohmann, Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems - Band III: Hymenostomata, Prostomatida, Nassulida. Informationsberichte des Bayer. Landesamtes für Wasserwirtschaft, München, 1994.
  18. W. Foissner, H. Blatterer, H. Berger, F. Kohmann, Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems - Band IV: Gymnostomatea, Loxodes, Suctoria. Informationsberichte des Bayer. Landesamtes für Wasserwirtschaft, München, 1995.
  19. C.R. Curds, A. Warren, H. Salvadó Cabré, D. Roberts, An atlas of ciliated protozoa commonly found in aerobic sewage-treatment processes. An aid to monitor treatment-plant performance. Nat. Hist. Museum. London, 2008.
  20. C.G. Ogden, R.H Hedley, An atlas of freshwater testate amoebae. British Museum (Natural History) Oxford University Press, 1980.
  21. D. Jenkins, M.G. Richard, G.T. Daigger, Manual on the causes and control of activated sludge bulking, foaming and other solids separation problems, 3rd ed. Boca Raton, FL: CRC Press, 2004.
  22. M. Martín-Cereceda, S. Serrano, A. Guinea, A comparative study of ciliated protozoa communities in activated-sludge plants, FEMS Microbiol. Ecol., 21 (1996) 267–276.
  23. P. Madoni, A sludge biotic index (SBI) for the evaluation of the biological performance of activated sludge plants based on microfauna analysis, Water Res., 28 (1994) 67–75.
  24. C.E Shannon, W. Weaver, The Mathematical Theory of Communication. Univ. Illinois Press, Urbana, IL, 1963.
  25. A.E. Greenberg, L.S. Clesceri, A.D. Eaton, Standard Methods for the examination of water and wastewater, APHA. 18th ed., Washington, 1992.
  26. J. Laybourn, L. Whymant, The effect of diet and temperature on reproductive rate in Arcella vulgaris Ehrenberg (Sarcodina: Testacida), Oecologia, 45, (1980) 282–284.
  27. S. Chen, M. Xu, H. Cao, J. Zhu, K. Zhou, J. Xu, X. Yang, Y. Gan, W. Liu, J. Zhai, Y. Shao, The activated-sludge fauna and performance of five sewage treatment plants in Beijing, China, Eur. J. Protistol., 40 (2004) 147–152.
  28. B. Hu, R. Qi, W. An, M. Yang, Responses of protists with different feeding habits to the changes of activated sludge conditions: A study based on biomass data, J. Environ. Sci., (2012) 2127–2132.
  29. W. Zhou, T. Imai, M. Ukita, M. Sekine, T. Higuchi, Triggering forces for anaerobic granulation in UASB reactors, Process Biochem., 41 (2006) 36–43.
  30. K. Zhou, M. Xu, B. Liu, H. Cao, Characteristics of microfauna and their relationships with the performance of an activated sludge plant in China, J. Environ. Sci., 20 (2008) 482–486.
  31. W. Foissner, Protists as bioindicators in activated sludge: Identification, ecology and future needs, Eur. J. Protistol., 55 (2016) 75–94.