References

  1. P. Veerakumar, V. Veeramani, S.M. Chen, R. Madhu, S.B. Liu, Palladium nanoparticle incorporated porous activated carbon: electrochemical detection of toxic metal ions, ACS. Appl. Mater. Inter., 8 (2016) 1319–1326.
  2. Y. Abbas, W. Olthuis, A.V.D. Berg, Activated carbon as a pseudo- reference electrode for electrochemical measurement inside concrete, Conster. Build. Mater., 100 (2015) 194–200.
  3. X.F. Li, Q. Xu, Y. Fu, Q.X. Guo, Preparation and characterization of activated carbon from Kraft lignin via KOH activation, Environ. Prog. Sustain., 33 (2014) 519–526.
  4. M. Ahmaruzzaman, R.A. Reza, J.K. Ahmed, A.K. Sil, Scavenging behavior of schumannianthus dichotomus-derived activated carbon for the removal of methylene blue from aqueous phase, Environ. Prog. Sustain., 33 (2013) 1148–1157.
  5. M. Hefti, L. Joss, D. Marx, M. Mazzotti, An experimental and modeling study of the adsorption equilibrium and dynamics of water vapor on activated carbon, Ind. Eng. Chem. Res., 54 (2015) 12165−12176.
  6. M. Wang, H. Liu, Z.H. Huang, F. Kang, Activated carbon fibers loaded with MnO2, for removing NO at room temperature, Chem. Eng. J., 256 (2014) 101–106.
  7. R. Wang, P. Wang, X. Yan, J. Lang, C. Peng, Q. Xue, Promising porous carbon derived from celtuce leaves with outstanding super capacitance and CO2 capture performance, ACS Appl. Mater. Int., 4 (2012) 5800–5806.
  8. C. Peng, X.B. Yan, R.T. Wang, J.W. Lang, Y.J. Ou, Q.J. Xue, Promising activated carbons derived from waste tea-leaves and their application in high performance super capacitors electrodes, Electrochim. Acta, 87 (2013) 401–408.
  9. C.Y. Wang, J.L. Gray, Q. Gong, Y. Zhao, J. Li, E. Klontzas, G. Psofogiannakis, G. Froudakis, A.D. Lueking, Hydrogen storage with spectroscopic identification of chemisorption sites in Cu-TDPAT via spillover from a Pt/activated carbon catalyst, J. Phys. Chem. C., 118 (2014) 26750–26763.
  10. M.M.A. Daiem, J. Rivera-Utrilla, M. Sánchez-Polo, R. Ocampo-Pérez, Single, competitive, and dynamic adsorption on activated carbon of compounds used as plasticizers and herbicides, Sci. Total Environ., 537 (2015) 335–342.
  11. L. Wang, H. Zhang, G. Cao, W. Zhang, H. Zhao, Y. Yang, Effect of activated carbon surface functional groups on nano-lead electro deposition and hydrogen evolution and its applications in lead-carbon batteries, Electrochim. Acta, 186 (2015) 654–663.
  12. J.S. Kim, S.J. Lee, S.H. Yoon, C.H. Lee, Competitive adsorption of trace organics on membranes and powdered activated carbon in powdered activated carbon-ultrafiltration system, Water Sci. Technol., 34 (1996) 223–229.
  13. H. Oda, A. Yamashita, S. Minoura, M. Okamoto, T. Morimoto, Modification of the oxygen-containing functional group on activated carbon fiber in electrodes of an electric double-layer capacitor, J. Power Sources, 158 (2006) 1510–1516.
  14. Y. Liao, D.G. Yu, X. Wang, W. Chain, X.G. Li, E.M. Hoek, R.B. Kaner, Carbon nanotube-templated polyaniline nanofibers: synthesis, flash welding and ultrafiltration membranes, Nanoscale, 5 (2013) 3856–3862
  15. Y. Liao, X.G. Li, E.M.V. Hoek, R.B. Kaner, Carbon nanotube/ polyaniline nanofiber ultrafiltration membranes, J. Mater. Chem. A., 1 (2013) 15390–15396.
  16. G.R. Guillen, T.P. Farrell, R.B. Kaner, E.M.V. Hoek, Pore-structure, hydrophilicity, and particle filtration characteristics of polyaniline-polysulfone ultrafiltration membranes, J. Mater. Chem., 20 (2010) 4621–4628.
  17. Y. Liao, T. Farrell, G. Guillen, M. Li, J.T. Temple, X.G. Li, E.M.V. Hoek, R.B. Kaner, Highly dispersible polypyrrole nanospheres for advanced nanocomposite ultrafiltration membranes, Mater. Horiz., 1 (2013) 58–64.
  18. Y. Liao, X. Wang, W. Qian, Y. Li, X. Li, D.G. Yu, Bulk synthesis, optimization, and characterization of highly dispersible polypyrrole nanoparticles toward protein separation using nanocomposite membranes, J. Colloid Interf. Sci., 386 (2012) 148–157.
  19. D.D. Hao, J.Q. Chen, X.Q. Liao, Y. Zheng, Y.B. Ji, Concentration of astragalus polysaccharide by polysulfone-activated carbon modified with nitric acid blend ultrafiltration membranes, J. Mem. Sep. Technol., 2 (2013) 27–35.
  20. H.P. Boehm, Some aspects of the surface chemistry of carbon blacks and other carbons, Carbon, 32 (1994) 759–769.
  21. P.M. Alvarez, J.F. García-Araya, F.J. Beltrán, F.J. Masa, F. Medina, Ozonation of activated carbons: effect on the adsorption of selected phenolic compounds from aqueous solutions, J. Colloid. Interf. Sci., 283 (2005) 503–512.
  22. M.S. Shafeeyan, M.A.W.D. Wan, A. Houshmand, A. Shamiri, A review on surface modification of activated carbon for carbon dioxide adsorption, J. Anal. Appl. Pyrol., 89 (2010) 143–151.
  23. A. Zhou, X. Ma, C. Song, Effects of oxidative modification of carbon surface on the adsorption of sulfur compounds in diesel fuel, Appl. Catal. B-Environ., 87 (2009) 190–199.
  24. A. Macías-García, M.A. Díaz-Díez, E.M. Cuerda-Correa, M. Olivares-Marín, J. Gañan-Gómez, Study of the pore size distribution and fractal dimension of HNO3-treated activated carbons, Appl. Surf. Sci., 252 (2006) 5972–5975.
  25. J. Przepiórski, Enhanced adsorption of phenol from water by ammonia-treated activated carbon, J. Hazard. Mater., 135 (2006) 453–456.
  26. J.W. Lim, J.M. Lee, S.M. Yun, B.J. Park, Y.S. Lee, Hydrophilic modification of polyacrylonitrile membranes by oxyfluorination, J. Ind. Eng. Chem., 15 (2009) 876–882.
  27. F. Liu, N.A. Hashim, Y. Liu, M.R.M. Abed, K. Li, Progress in the production and modification of pvdf membranes, J. Membr. Sci., 375 (2011) 1–27.
  28. J. Przepiórski, Enhanced adsorption of phenol from water by ammonia-treated activated carbon, J. Hazard. Mater., 135 (2006) 453–456.