References

  1. S. Muthukumaran, Performance evaluation of different ultra filtration membranes for the reclamation and reuse of secondary effluent. Desalination, 279 (2011) 383–389.
  2. A. Alturki, J. Mcdonald, S.J Khan, F.I. Hai, W.E. Price, L.D. Nghiem, Performance of a novel osmotic membrane bioreactor (OMBR) system: Flux stability and removal of trace organics, Bioresour. Technol., 113 (2012) 201–210.
  3. Praveen, Nguyen, Loh, Biodegradation of phenol from saline wastewater using forward osmotic hollow fiber membrane bioreactor coupled chemostat, Biochem. Eng. J., 94 (2015) 125–133.
  4. G.B. Li, H. Liang, Zero irreversible flux for ultra filtration and its application in water treatment process, J. China Water Wastewater, 28 (2012) 5–7.
  5. J.X. Li, X.H. Li, H. Wang, B.Q. He, J. Wang, H.W. Zhang, J.J. Li, Mathematical modeling for the local flux distribution of submerged hollow fiber membrane module, Membr. Sci. Technol., 35 (2015) 1–5.
  6. X.H. Li, J.X. Li, J. Wang, H. Wang, Experimental investigation of local flux distribution and fouling behavior in double-end and dead-end submerged hollow fiber membrane modules, J. Membr. Sci., 453 (2014) 18–26.
  7. X.H. Li, J.X. Li, H. Wang, A filtration model for prediction of local flux distribution and optimization of submerged hollow fiber membrane module, AIChE J., 61 (2015) 4377–4386.
  8. L.W. Zhuang, G.C. Dai, Numerical simulation of dynamic process during outside-in dead-end filtration in hollow fiber membrane module, J. CIESC, 67 (2016) 2841–2850.
  9. L.W. Zhuang, G. Dai, Numerical simulation of flux distribution in the hollow fiber ultra filtration membrane module, Membr. Sci. Technol., 36 (2016) 86–95.
  10. C. Liu, X.L Lv, C.R. Wu, X. Wang, Q.J. Gao, H.Y. Chen, Y. Jia, Discussing about critical operating flux of ultra filtration membrane, Membr. Sci. Technol., 37 (2017) 23–26.
  11. Y.P. Zhang, X.L. Wang, J. Liu, Y.H. Wang, X.H. Pan, J. Hao, Evaluation of uncertainty in measurement of pure water flux of hollow fiber ultra filtration membrane, Technol. Water Treat., 40 (2014) 53–56.
  12. J. Gunther, P. Schmitz, C. Albasi, C. Lafforgue, A numerical approach to study the impact of packing density on fluid flow distribution in hollow fiber module, J. Membr. Sci., 348 (2010) 277–286.
  13. Y.S Polyakov, Dead-end outside in hollow-fiber membrane filter: Mathematical model, J. Membr. Sci., 279 (2006) 615–624.
  14. S. Lin, Effect of operating parameters on the separation of proteins in aqueous solutions by dead-end ultra filtration, Desalination, 234 (2008) 116–125.
  15. A.K. Pavanasam, A. Abbas, V. Chen, Influence of particle size and operating parameters on virus ultra filtration efficiency, Water Sci. Technol. Water Supply, 11 (2011) 31–38.
  16. E. Alventosa-Delara, S. Barredo-Damas, M. Alcaina-Miranda, M.I. Iborra-Clar, Ultra filtration technology with a ceramic membrane for reactive dye removal: optimization of membrane performance, J. Hazard. Mater., 209 (2012) 492–500.
  17. S.H. Yoon, S.H. Lee, I.T. Yeom, Experimental verification of pressure drop models in hollow fiber membrane, J. Membr. Sci., 310 (2008) 7–12.
  18. K.B. Lim, et al., Computational studies for the design parameters of hollow fibre membrane modules, J. Membr. Sci., 529 (2017) 263–273.
  19. M. Mehdipourghazi, S. Barati, F. Varaminian, Mathematical modeling and simulation of carbon dioxide stripping from water using hollow fiber membrane contactors, Chem. Eng. Process.: Process Intens., 95 (2015) 159–164.
  20. S. Chang, A.G Fane, The effect of fibre diameter on filtration and flux distribution-relevance to submerged hollow fibre modules, J. Membr. Sci., 184 (2001) 221–231.
  21. Z.C. Zhang, H.Y. Yuan, Pure water flux distribution in form of single-ended and double-ended water supply of the internal pressure-type ultra filtration membrane fiber, Ind. Water Treat., 36 (2016) 70–73.