References

  1. Y. Matsui, T. Yamagishi, Y. Terada, T. Matsushita, T. Inoue, Suspended particles and their characteristics in water mains: developments of sampling methods, J. Water Supply Res. Technol. AQUA, 56 (2007) 13–24.
  2. J.Q. Verberk, K. O’Halloran, L. Hamilton, J. Vreeburg, J. Van Dijk, Measuring particles in drinking water transportation systems with particle counters, J. Water Supply Res. Technol. AQUA, 56 (2007) 345–355.
  3. J. Vreeburg, D. Boxall, Discolouration in potable water distribution systems: a review, Water Res., 41 (2007) 519–529.
  4. G. Liu, E.J. Van der Mark, J.Q.J.C. Verberk, J.C. Van Dijk, Flow cytometry total cell counts: a field study assessing microbiological water quality and growth in unchlorinated drinking water distribution systems, Biomed Res. Int., 2013 (2013) 1–10.
  5. J.J. Rook, Formation of haloforms during chlorination of natural waters, Water Treat. Exam., 23 (1974) 234–243.
  6. W. King, L. Marrett, Case-control study of bladder cancer and chlorination by products in treated water (Ontario, Canada), Cancer Causes Control, 7 (1996) 596–604.
  7. S.E. Hrudey, J. Fawell, 40 years on: what do we know about drinking water disinfection by-products (DBPs) and human health?, Water Sci. Technol. Water Supply, 15 (2015) 667–674.
  8. V. Kanakoudis, K. Gonelas, Applying pressure management to reduce water losses in two Greek cities’ water distribution systems: expectations, problems, results and revisions, Procedia Eng., 89 (2014) 318–325.
  9. V. Kanakoudis, S. Tsitsifli, G. Demetriou, Applying an integrated methodology toward non-revenue water reduction: the case of Nicosia, Cyprus, Desal. Wat. Treat., 57 (2016) 11447–11461.
  10. V. Kanakoudis, K. Gonelas, Non-revenue water reduction through pressure management in Kozani’s water distribution network: from theory to practice, Desal. Wat. Treat., 57 (2016) 11436–11446.
  11. V. Kanakoudis, K. Gonelas, Assessing the results of a virtual pressure management project applied in Kos Town water distribution network, Desal. Wat. Treat., 57 (2016) 11472–11483.
  12. K. Gonelas, A. Chondronasios, V. Kanakoudis, M. Patelis, P. Korkana, Forming DMAs in a water distribution network considering the operating pressure and the chlorine residual concentration as the design parameters, J. Hydroinf., 19 (2017) 900–910.
  13. A. Chondronasios, K. Gonelas, V. Kanakoudis, M. Patelis, P. Korkana, Optimizing DMAs formation in a water pipe network: the water aging and the operating pressure factors, J. Hydroinf., 19 (2017) 890–899.
  14. USEPA, Effects of Water Age on Distribution System Water Quality. Office of Water (4601M), Office of Ground Water and Drinking Water, Distribution System Issue Paper, 2002.
  15. V. Kanakoudis, A troubleshooting manual for handling operational problems in water pipe networks, J. Water Supply Res. Technol. AQUA, 53 (2004) 109–124.
  16. P. Gleick, Water and terrorism, Water Policy, 8 (2006) 481–503.
  17. J. Valcik, Biological Warfare Agents as Potable Water Threats, Medical Issues, Information Paper No. IP-31-017, US Army Center for Health Promotion and Preventative Medicine, Aberdeen Proving Ground, Maryland, 1998.
  18. E. Santamaria, J. Moßgraber, E. Brill, I. Montalvo Arango, A system architecture for the detection and mitigation of CBRN related contamination events of drinking water, Procedia Eng., 119 (2015) 319–327.
  19. C. Cook, K. Bakker, Water security: debating an emerging paradigm, Global Environ. Change, 22 (2012) 94–102.
  20. J. Crisologo, Security and Preparedness – California implements water security and emergency preparedness, response, and recovery initiatives, J. Am. Water Resour. Assoc., 100 (2008) 30–34.
  21. S. Minamyer, Security and preparedness – effective crisis communication during – water security emergencies, J. Am. Water Resour. Assoc., 100 (2008) 180–184.
  22. K. Morley, R. Janke, R. Murray, K. Fox, Security and preparedness – drinking water contamination –warning systems: water utilities driving water security research, J. Am. Water Resour. Assoc., 99 (2007) 40–46.
  23. UNESCO-IHE, Research Themes, Water Security, 2009. Available at: http://www.unesco-ihe.org/ Research/Research-Themes/Water-security (Accessed 3 May 2017).
  24. V. Kanakoudis, Vulnerability based management of water resources systems, J. Hydroinf., 6 (2004) 133–156.
  25. A. Yazdanbakhsh, M. Manshuri, R. Nabizadeh, G.H. Jahed, R. Fallahzadeh, Guidelines of water safety plan based on hazard analysis and critical control point system, 1st ed., Avay e Ghalam Publications, Tehran, 2008.
  26. A. Rinehold, L. Corrales, E. Medlin, R.J. Gelting, Water safety plan demonstration projects in Latin America and the Caribbean: lessons from the field, Water Sci. Technol. Water Supply, 11 (2011) 297–308.
  27. E. Perrier, M. Kot, H. Castleden, G.A. Gagnon, Drinking water safety plans: barriers and bridges for small systems in Alberta, Canada, Water Policy, 16 (2014) 1140–1154.
  28. M. Storey, B. van der Gaag, B. Burns, Advances in on-line drinking water quality monitoring and early warning systems, Water Res., 45 (2011) 741–747.
  29. M.H. Banna, S. Imran, A. Francisque, H. Najjaran, R. Sadiq, M. Rodriguez, M. Hoorfar, Online drinking water quality monitoring: review on available and emerging technologies, Crit. Rev. Environ. Sci. Technol., 44 (2014) 1370–1421.
  30. K. Betts, DNA chip technology could revolutionize water testing, Environ. Sci. Technol., 33 (1999) 300A–301A.
  31. K. Betts, Testing the waters for new beach technology, Environ. Sci. Technol., 33 (1999) 353A–354A.
  32. M. Hewish, Mini-robots Sniff Out Chemical Agents, Jane’s International Defense Review, June, Vol. 31, 1998, p. 87.
  33. I. Karadirek, S. Kara, A. Muhammetoglu, H. Muhammetoglu, S. Soyupak, Management of chlorine dosing rates in urban water distribution networks using online continuous monitoring and modeling, Urban Water J., 13 (2016) 345–359.
  34. J. Vasconcelos, L. Rossman, W. Grayman, P. Boulos, R. Clark, Kinetics of chlorine decay, J. Am. Water Resour. Assoc., 89 (1997) 54–65.
  35. P. Biswas, C. Lu, R. Clark, A model for chlorine concentration decay in pipes, Water Res., 27 (1993) 1715–1724.
  36. V. Chambers, J. Creasey, J. Joy, Modelling free and total chlorine decay in potable water distribution systems, J. Water Supply Res. Technol. AQUA, 44 (1995) 60–69.
  37. L. Rossman, R. Clark, W. Grayman, Modelling chlorine residuals in drinking-water distribution systems, J. Environ. Eng., 120 (1994) 803–819.
  38. W. Grayman, A Quarter of a Century of Water Quality Modeling in Distribution Systems, Eighth Annual Water Distribution Systems Analysis Symposium (WDSA), Cincinnati, Ohio, USA, 2012, pp. 1–12.
  39. D. Wood, Slurry flow in pipe networks, J. Hydraul. Eng., 106 (1980) (HY1) 57–70.
  40. R. Males, R. Clark, P. Wehrman, W. Gates, Algorithm for mixing problems in water systems, J. Hydraul. Eng., 111 (1985) 206–219.
  41. W. Grayman, R. Clark, R. Males, Modeling distribution system water quality: dynamic approach, J. Water Resour. Plann. Manage., 114 (1988) 295–312.
  42. A. Abokifa, Y. Yang, C. Lo, P. Biswas, Water quality modeling in the dead end sections of drinking water distribution networks, Water Res., 89 (2016) 107–117.
  43. L. Rossman, Epanet 2-User’s Manual, United States Environmental Protection Agency (EPA), Cincinnati, OH, 2000.
  44. F. Shang, J.G. Uber, M.M. Polycarpou, Particle backtracking algorithm for water distribution system analysis, J. Environ. Eng., 128 (2002) 441–450.
  45. M.L. Zierolf, M.M. Polycarpou, J.G. Uber, Development and autocalibration of an input–output model of chlorine transport in drinking water distribution systems, IEEE Trans. Control Syst. Technol., 6 (1998) 543–553.
  46. S.G. Vrachimis, D.G. Eliades, M.M. Polycarpou, The backtracking uncertainty bounding algorithm for chlorine sensor fault detection, Procedia Eng., 119 (2015) 613–622.
  47. R. Qualls, J. Johnson, Kinetics of the short-term consumption of chlorine by fulvic acid, Environ. Sci. Technol., 17 (1983) 692–698.
  48. G. Zhang, L. Keine, O. Wable, U. Chan, J. Duget, Modeling of chlorine residual in the water distribution system network of Macao, Environ. Technol., 13 (1992) 937–946.
  49. T. Lyn, J. Taylor, Modeling Compliance of Chlorine Residual and Disinfection By-products, Proc. American Water Works Association–Water Quality Technology Conference, Miami, 1993, pp. 513–523.
  50. R.M. Clark, M. Sivaganesan, Predicting chlorine residuals in drinking water: second order model, J. Water Resour. Plann. Manage., 128 (2002) 152–161.
  51. G. Amy, P. Chadik, Z. Chowdhury, Developing models for predicting trihalomethane formation potential and kinetics, J. Am. Water Resour. Assoc., 79 (1987) 89–97.
  52. R. Clark, H. Pourmoghaddas, L. Wymer, R. Dressman, Modeling the kinetics of chlorination by-product formation: the effects of bromide, J. Water Supply Res. Technol. AQUA, 45 (1996) 112–119.
  53. M. Radhakrishnan, A. Pathirana, K. Ghebremichael, G. Amy, Modelling formation of disinfection by-products in water distribution: optimisation using a multi-objective evolutionary algorithm, J. Water Supply Res. Technol. AQUA, 61 (2012) 176–188.
  54. C. Gougoutsa, C. Christophoridis, C.K. Zacharis, K. Fytianos, Assessment, modeling and optimization of parameters affecting the formation of disinfection by-products in water, Environ. Sci. Pollut. Res., 23 (2016) 16620–16630.
  55. B. Barbeau, V. Gauthier, K. Julienne, A. Carriere, Dead-end flushing of a distribution system: short and long-term effects on water quality, J. Water Supply Res. Technol. AQUA, 54 (2005) 371–383.
  56. R. Galvin, Eliminate dead-end water, Opflow, 37 (2011) 20–21.
  57. V. Tzatchkov, A. Aldama, F. Arreguin, Advection-dispersionreaction modeling in water distribution networks, J. Water Resour. Plann. Manage., 128 (2002) 334–342.
  58. A. Ostfeld, Optimal design and operation of multiquality networks under unsteady conditions, J. Water Resour. Plann. Manage., 131 (2005) 116–124.
  59. H. Mala-Jetmarova, N. Sultanova, D. Savic, Lost in optimisation of water distribution systems? A literature review of system operation, Environ. Modell. Software, 93 (2017) 209–254.
  60. L. Alfonso, A. Jonoski, D. Solomatine, Multiobjective optimization of operational responses for contaminant flushing in water distribution networks, J. Water Resour. Plann. Manage., 136 (2010) 48–58.
  61. G. Dandy, M. Gibbs, Optimizing System Operations and Water Quality, P. Bizier, P. DeBarry, Eds., World Water and Environmental Resources Congress, American Society of Civil Engineers, Philadelphia, 2003, p. 127.
  62. Y. Arai, A. Koizumi, T. Inakazu, A. Masuko, S. Tamura, Optimized operation of water distribution system using multipurpose fuzzy LP model, Water Sci. Technol. Water Supply, 13 (2013) 66–73.
  63. U. Shamir, E. Salomons, Optimal real-time operation of urban water distribution systems using reduced models, J. Water Resour. Plann. Manage., 134 (2008) 181–185.
  64. D. Boccelli, M. Tryby, J. Uber, L. Rossman, M. Zierolf, M. Polycarpou, Optimal scheduling of booster disinfection in water distribution systems, J. Water Resour. Plann. Manage., 124 (1998) 99–111.
  65. F. Meng, S. Liu, A. Ostfeld, C. Chen, A. Burchard-Levine, A deterministic approach for optimization of booster disinfection placement and operation for a water distribution system in Beijing, J. Hydroinf., 15 (2013) 1042–1058.
  66. T. Prasad, G. Walters, D. Savic, Booster disinfection of water supply networks: multiobjective approach, J. Water Resour. Plann. Manage., 130 (2004) 367–376.
  67. M. Tryby, D. Boccelli, J. Uber, L. Rossman, Facility location model for booster disinfection of water supply networks, J. Water Resour. Plann. Manage., 128 (2002) 322–333.
  68. F. Goldman, A. Sakarya, Optimal Operation of Water Systems, L.W. Mays, Ed., Urban Water Supply Handbook, McGraw-Hill Companies, New York, USA, 2002.
  69. G. Munavalli, M. Kumar, Optimal scheduling of multiple chlorine sources in water distribution systems, J. Water Resour. Plann. Manage., 129 (2003) 493–504.
  70. M. Propato, J. Uber, Linear least-squares formulation for operation of booster disinfection systems, J. Water Resour. Plann. Manage., 130 (2004) 53–62.
  71. A. Sakarya, L.W. Mays, Optimal operation of water distribution pumps considering water quality, J. Water Resour. Plann. Manage., 126 (2000) 210–220.
  72. C. Biscos, M. Mulholland, M-V. Le Lann, C. Buckley, C. Brouckaert, Optimal operation of water distribution networks by predictive control using MINLP, Water SA, 29 (2003) 393–404.
  73. A. Ostfeld, E. Salomons, Conjunctive optimal scheduling of pumping and booster chlorine injections in water distribution systems, Eng. Optim., 38 (2006) 337–352.
  74. L. Murphy, D. McIver, G. Dandy, C. Hewitson, J. Frey, L. Jacobsen, M. Fang, GA Optimization for Las Vegas Valley Water Distribution System Operations and Water Quality, American Society of Civil Engineers, Tampa, Florida, USA, 2007, pp. 494–494.
  75. T. Prasad, G. Walters, Minimizing residence times by rerouting flows to improve water quality in distribution networks, Eng. Optim., 38 (2006) 923–939.
  76. W. Wu, G. Dandy, H. Maier, Optimal control of total chlorine and free ammonia levels in a water transmission pipeline using artificial neural networks and genetic algorithms, J. Water Resour. Plann. Manage., 141 (2015) 04014085.
  77. B. Lee, R. Deininger, Optimal locations of monitoring stations in water distribution system, J. Environ. Eng., 118 (1992) 4–16.
  78. A. Kessler, A. Ostfeld, G. Sinai, Detecting accidental contaminations in municipal water networks, J. Water Resour. Plann. Manage., 124 (1998) 192–198.
  79. J. Berry, L. Fleischer, W. Hart, C. Philips, J.-P. Watson, Sensor placement in municipal water networks, J. Water Resour. Plann. Manage., 131 (2005) 237–243.
  80. J. Xu, P. Fischbeck, M. Small, J. VanBriesen, E. Casman, Identifying sets of key nodes for placing sensors in dynamic water distribution networks, J. Water Resour. Plann. Manage., 134 (2008) 378–385.
  81. J. Berry, W. Hart, C. Philips, J. Uber, J.-P. Watson, Sensor placement in municipal water networks with temporal integer programming models, J. Water Resour. Plann. Manage., 132 (2006) 218–224.
  82. A. Preis, A. Ostfeld, Multiobjective contaminant sensor network design for water distribution systems, J. Water Resour. Plann. Manage., 134 (2008) 366–377.
  83. A. Krause, J. Leskovec, C. Guestrin, J. VanBriesen, C. Faloutsos, Efficient sensor placement optimization for securing large water distribution networks, J. Water Resour. Plann. Manage., 134 (2008) 516–526.
  84. J. Waeytens, I. Mahfoudhi, M.-A. Chabchoub, P. Chatellier, Adjoint-based numerical method using standard engineering software for the optimal placement of chlorine sensors in drinking water networks, Environ. Modell. Software, 92 (2017) 229–238.
  85. A. Juan, J. Faulin, S. Grasman, M. Rabe, G. Figueira, A review of simheuristics: extending metaheuristics to deal with stochastic combinatorial optimization problems, Oper. Res. Perspect., 2 (2015) 62–72.