References

  1. H. Over, Surface chemistry of ruthenium dioxide in heterogeneous catalysis and electrocatalysis: from fundamental to applied research, Chem. Rev., 112 (2012) 3356–3426.
  2. T. Luu, C. Kim, S. Kim, J. Kim, J. Yoon, Fabricating macroporous RuO2-TiO2 electrodes using polystyrene templates for high chlorine evolution efficiencies, Desal. Wat. Treat., 77 (2017) 94–104.
  3. T. Luu, J. Kim, J. Yoon, A novel microwave-assisted synthesis of RuO2-TiO2 electrodes with improved chlorine and oxygen evolutions, Desal. Wat. Treat., 77 (2017) 105–111.
  4. X. Ma, Y. Gao, Y. Cui, H. Huang, J. Han, Electrochemical treatment of papermaking tobacco sheet wastewater on β-PbO2 and Ti/TiO2-RuO2-IrO2 electrodes, Desal. Wat. Treat., 57 (2016) 19557–19565.
  5. S. Trasatti, Electrocatalysis: understanding the success of DSA®, Electrochim. Acta, 45 (2000) 2377–2385.
  6. T. Luu, J. Kim, J. Yoon, Physicochemical properties of RuO2 and IrO2 electrodes affecting chlorine evolutions, J. Ind. Eng. Chem., 21 (2014) 400–404.
  7. T. Luu, J. Kim, C. Kim, S. Kim, J. Yoon, The effect of fabrication conditions of RuO2 electrode to the chlorine electrocatalytic activity, Bull. Korean Chem. Soc., 36 (2015) 1411–1417.
  8. S. Trasatti, Electrocatalysis in the anodic evolution of oxygen and chlorine, Electrochim. Acta, 29 (1984) 1503–1512.
  9. H. Chen, H. Lai, J. Jow, Annealing effect on the performance of RuO2–Ta2O5/Ti electrodes for use in supercapacitors, Mater. Chem. Phys., 125 (2011) 652–655.
  10. J. Kristof, J. Liszi, A. Battisti, A. Barbieri, P. Szabo, Thermoanalytical investigation of the formation of RuO2-based mixed-oxide electrodes, Mater. Chem. Phys., 37 (1994) 23.
  11. C. Angejinetta, S. Trasatti, L. Atanasoska, Z. Minevski, Effect of preparation on the surface and electrocatalytic properties of RuO2 + IrO2 mixed oxide electrodes, Mater. Chem. Phys., 22 (1989) 231–247.
  12. V. Panic, A. Dekanski, M. Stankovic, S. Milonjic, B. Nikoli, On the deactivation mechanism of RuO2–TiO2/Ti anodes prepared by the sol–gel procedure, J. Electroanal. Chem., 579 (2005) 67.
  13. I. Kim, K. Kim, Electrochemical characterization of hydrous ruthenium oxide thin-film electrodes for electrochemical capacitor applications, J. Electrochem. Soc., 153 (2006) A383–A389.
  14. W. Shin, S. Yoon, Characterization of RuO2 thin films prepared by hot-wall metallorganic chemical vapor deposition, J. Electrochem. Soc., 144 (1997) 1055–1060.
  15. C. Hu, C. Wang, T. Wu, K. Chang, Anodic composite deposition of hydrous RuO2–TiO2 nanocomposites for electrochemical capacitors, Electrochim. Acta, 85 (2012) 90–98.
  16. C. Lokhande, Chemical deposition of metal chalcogenide thin films, Mater. Chem. Phys., 27 (1991) 1–43.
  17. H. Pathan, C. Lokhande, Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method, Bull. Mater. Sci., 27 (2004) 85–111.
  18. R. Mane, C. Lokhande, Chemical deposition method for metal chalcogenide thin films, Mater. Chem. Phys., 65 (2000) 1–31.
  19. X. Xia, J. Tu, X. Wang, C. Gu, X. Zhao, Hierarchically porous NiO film grown by chemical bath deposition via a colloidal crystal template as an electrochemical pseudocapacitor material, J. Mater. Chem., 21 (2011) 671.
  20. C. Lokhande, A. More, J. Gunjakar, Microstructure dependent performance of chemically deposited nanocrystalline metal oxide thin films, J Alloys Compd., 486 (2009) 570–580.
  21. U. Patil, K. Gurava, O. Joo, C. Lokhande, Synthesis of photosensitive nanograined TiO2 thin films by SILAR method, J. Alloys Compd., 478 (2009) 711–715.
  22. M. Suchea, S. Christoulakis, M. Katharakis, N. Vidakis, E. Koudoumas, Influence of thickness and growth temperature on the optical and electrical properties of ZnO thin films, Thin Solid Films, 515 (2006) 4303–4306.
  23. D. Dubal, A. Jagadale, S. Patil, C. Lokhande, Simple route for the synthesis of supercapacitive Co–Ni mixed hydroxide thin films, Mater. Res. Bull., 47 (2012) 1239–1245.
  24. R. Salunkhe, D. Dhawale, T. Gujar, C. Lokhande, Structural, electrical and optical studies of SILAR deposited cadmium oxide thin films: annealing effect, Mater. Res. Bull., 44 (2009) 364–368.
  25. X. Xia, J. Tu, Y. Zhang, X. Wang, C. Gu, X. Zhao, H. Fan, Highquality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage, ACS Nano, 6 (2012) 5531–5538.
  26. S. Music, S. Popovic, M. Maljkovic, A. Saric, Synthesis and characterization of nanocrystalline RuO2 powders, Mater. Lett., 58 (2004) 1431–1436.
  27. P. Deshmukh, S. Pusawale, A. Jagadale, C. Lokhande, Supercapacitive performance of hydrous ruthenium oxide (RuO2·nH2O) thin films deposited by SILAR method, J. Mater. Sci., 47 (2012) 1546.
  28. U. Patil, S. Kulkarni, V. Jamadade, C. Lokhande, Chemically synthesized hydrous RuO2 thin films for supercapacitor application, J. Alloys Compd., 509 (2011) 1677.
  29. W. Lee, R. Mane, V. Todkar, S. Lee, O. Egorov, W. Chae, S. Han, Implication of liquid-phase deposited amorphous RuO2 electrode for electrochemical supercapacitor, Electrochem. Solid-State Lett., 10 (2007) A225–A227.
  30. S. Pusawale, P. Deshmukh, J. Gunjakar, C. Lokhande, SnO2–RuO2 composite films by chemical deposition for supercapacitor application, Mater. Chem. Phys., 139 (2013) 416–422.
  31. V. Patake, C. Lokhande, Chemical synthesis of nano-porous ruthenium oxide (RuO2) thin films for supercapacitor application, Appl. Surf. Sci., 254 (2008) 2820–2824.
  32. D. Dubal, G. Gund, R. Holze, H. Jadhav, C. Lokhande, C. Park, Solution-based binder-free synthetic approach of RuO2 thin films for all solid state supercapacitors, Electrochim. Acta, 103 (2013) 103–109.
  33. S. Oh, L. Nazar, Direct synthesis of electroactive mesoporous hydrous crystalline RuO2 templated by a cationic surfactant, J. Mater. Chem., 20 (2010) 3834–3839.
  34. X. Liu, X. Zhang, NiO-based composite electrode with RuO2 for electrochemical capacitors, Electrochim. Acta, 49 (2004) 229–232.
  35. X. Fu, H. Yu, F. Peng, H. Wang, Y. Qian, Facile preparation of RuO2/CNT catalyst by a homogenous oxidation precipitation method and its catalytic performance, Appl. Catal., A, 321 (2007) 190–197.
  36. R. Kotz, S. Stuck, Stabilization of RuO2 by IrO2 for anodic oxygen evolution in acid media, Electrochim. Acta, 31 (1986) 1311–1316.
  37. J. Jirkovsky, H. Hoffmannova, M. Klementova, P. Krtil, Particle size dependence of the electrocatalytic activity of nanocrystalline RuO2 electrodes, J. Electrochem. Soc., 153 (2006) 111–118.
  38. C. Malmgren, A. Eriksson, A. Cornell, J. Backtrom, E. Eriksson, H. Olin, Nanocrystallinity in RuO2 coatings—influence of precursor and preparation temperature, Thin Solid Films, 518 (2010) 3615–3618.
  39. H. Klug, H. Alexander, X-ray Diffraction Procedures, 2nd ed., Wiley, New York, 1974, p. 112.
  40. A. Bard, L. Faulkner, Electrochemical methods-Fundamentals and Applications, 2nd ed., Wiley, 2001, p. 200.
  41. P. Hong, N. Ngoc, D. Chi, L. Ba, Nanosized IrxRu1−xO2 electrocatalysts for oxygen evolution reaction in proton exchange membrane water electrolyzer, Adv. Nat. Sci.: Nanosci. Nanotechnol., 6 (2015) 025015.
  42. S. Ardizzone, G. Fregonara, S. Trasatti, “Inner” and “outer” active surface of RuO2 electrodes, Electrochim. Acta, 35 (1990) 263–267.
  43. APHA, Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association, Washington, D.C., 2005, p. 4.
  44. J. Ribeiro, A. Andrade, Characterization of RuO2Ta2O5 coated titanium electrode microstructure, morphology, and electrochemical investigation, J. Electrochem. Soc., 151 (2004) 106–112.
  45. V. Panic, A. Dekanski, S. Milonjic, R. Atanasoski, B. Nikolic, The effect of the addition of colloidal iridium oxide into sol–gel obtained titanium and ruthenium oxide coatings on titanium on their electrochemical properties, Phys. Chem. Chem. Phys., 12 (2010) 7521–7528.
  46. A. Zeradjanin, F. Mantia, J. Masa, W. Schuhmann, Utilization of the catalyst layer of dimensionally stable anodes—interplay of morphology and active surface area, Electrochim. Acta, 82 (2012) 408–414.