References

  1. J. Tramontina, D.S. Azambuja, M.S. Clarisse Piatnicki, Removal of Cd2+ ion from dilute aqueous solutions by electrodeposition on reticulated vitreous carbon electrodes, J. Braz. Chem. Soc., 13 (2002) 469–473.
  2. R. Naseem, S.S. Tahir, Removal of Pb(II) from aqueous solutions by using bentonite as an adsorbent, Water Res., 35 (2001) 3982–3986.
  3. F.L. Fu, L.P. Xie, B. Tang, Q. Wang, S.X. Jiang, Application of a novel strategy: advanced Fenton-chemical precipitation to the treatment of strong stability chelated heavy metal containing wastewater, Chem. Eng. J., 189–190 (2012) 283–287.
  4. M. Soylak, Y.E. Unsal, N. Kizil, A. Aydin, Utilization of membrane filtration for preconcentration and determination of Cu(II) and Pb(II) in food, water and geological samples by atomic absorption spectrometry, Food Chem. Toxicol., 48 (2010) 517–521.
  5. H. Bessbousse, T. Rhlalou, J.F. Verchère, L. Lebrun, Removal of heavy metal ions from aqueous solutions by filtration with a novel complexing membrane containing poly(ethyleneimine) in apoly(vinyl alcohol) matrix, J. Membr. Sci., 307 (2008) 249–259.
  6. F. Ji, C.L. Li, B. Tang, J.H. Xu, G. Lu, P. Liu, Preparation of cellulose acetate/zeolite composite fiber and its adsorption behavior for heavy metal ions in aqueous solution, Chem. Eng. J., 209 (2012) 325–333.
  7. M.S.B. Mendoza, R.L. Ramos, P.A. Davila, L.F. Rubio, R.M.G. Coronado, Comparison of isotherms for the ion exchange of Pb(II) from aqueous solution onto homoionic clinoptilolite, J. Colloid Interface Sci., 301 (2006) 40–45.
  8. F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manage., 92 (2011) 407–418.
  9. G. Chen, Electrochemical technologies in wastewater treatment, Sep. Purif. Technol., 38 (2004) 11–41.
  10. C. Zhang, Y. Jiang, Y. Li, Z. Hu, L. Zhou, M. Zhou, Threedimensional electrochemical process for wastewater treatment: a general review, Chem. Eng. J., 228 (2013) 455–467.
  11. J.L. Nava, A. Recendiz, L.G. Gonzalez, G. Carreno, F. Martinez, Mass transport and potential studies in a flow-through porous electrode reactor. A comparative study of reticulated vitreous carbon and graphite felt used as cathode, Portugal, Electrochim. Acta, 27 (2009) 381–396.
  12. B. Liu, X. Lv, X. Meng, G. Yu, D. Wang, Removal of Pb(II) from aqueous solution using dithiocarbamate modified chitosan beads with Pb(II) as imprinted ions, Chem. Eng. J., 220 (2013) 412–419.
  13. F.F. Rivera, L.J. Nava, T.M. Oropeza, A. Recendiz, G. Carreno, Mass transport studies at rotating cylinder electrode: influence of the inter-electrode gap, Electrochim. Acta, 55 (2010) 3275–3278.
  14. J.M. Grau, J.M. Bisang, Removal of cadmium from dilute aqueous solutions with a rotating cylinder electrode of expanded metal, J. Chem. Technol. Biotechnol., 78 (2003) 1032–1037.
  15. T. Perez, J.L. Nava, Simulation of turbulent flow of a rotating cylinder electrode. Influence of using plates and concentric cylinder as counter electrodes, Int. J. Electrochem. Sci., 8 (2013) 4690–4699.
  16. A.H. Sulaymon, B.A. Abdulmajeed, A.B. Salman, Electrochemical removal of cadmium from simulated wastewater using smooth rotating cylinder electrode, Desal. Wat. Treat., 54 (2015) 2557–2563.
  17. M. Eisenberg, C.W. Tobias, C.R. Wilke, Ionic mass transfer and concentration polarization at rotating electrodes, J. Electrochem. Soc., 101 (1954) 306–320.
  18. A.H. Nahle, G.W. Reade, F.C. Walsh, Mass transport to reticulated vitreous carbon rotating cylinder electrodes, J. Appl. Electrochem., 25 (1995) 450–455.
  19. D.R. Gabe, G.D. Wilcox, J.G. Garcia, F.C. Walsh, The rotating cylinder electrode: its continued development and application, J. Appl. Electrochem., 28 (1998) 759–780.
  20. F.F. Rivera, L.J. Nava, Mass transport studies at rotating cylinder electrode (RCE) influence of using plates and concentric cylinder as counter electrodes, Electrochim. Acta, 52 (2007) 5868–5872.