References
- E.G. Njoku, J.A. Kong, Theory for passive microwave remote
sensing of near-surface soil moisture, J. Geophys. Res., 82 (1977)
3108–3118.
- E.G. Njoku, D. Entekhabi, Passive microwave remote sensing of
soil moisture, J. Hydrol., 184 (1996) 101–129.
- J.R. Piepmeier, P. Focardi, K.A. Horgan, J. Knuble, N. Ehsan,
J. Lucey, C. Brambora, P.R. Brown, P.J. Hoffman, R.T. French,
R.L. Mikhaylov, E.-Y. Kwack, E.M. Slimko, D.E. Dawson,
D. Hudson, J. Peng, P.N. Mohammed, G. De Amici, A.P.
Freedman, J. Medeiros, F. Sacks, R. Estep, M.W. Spencer, C.W.
Chen, K.B. Wheeler, W.N. Edelstein, P.E. O’Neill, E.G. Njoku,
SMAP L-band microwave radiometer: instrument design and
first year on orbit, IEEE Trans. Geosci. Remote Sens., 55 (2017)
1954–1966.
- J.C. Price, On the analysis of thermal infrared imagery: the
limited utility of apparent thermal inertia, Remote Sens.
Environ., 18 (1985) 59–73.
- Y. Xue, A.P. Cracknell, Advanced thermal inertia modelling, Int.
J. Remote Sens., 16 (1995) 431–446.
- J.A. Sobrino, M.H. El Kharraz, Combining afternoon and
morning NOAA satellites for thermal inertia estimation: 2
methodology and application, J. Geophys. Res., 104 (1999)
9455–9465.
- T. Yu, G.L. Tian, The application of thermal inertia method
the monitoring of soil moisture of north china plain based on
NOAA-AVHRR data, J. Remote Sens., 1 (1997) 24–31.
- V. Tramutoli, P. Clamps, M. Marella, N. Pergola, C. Sileo,
Feasibility of Hydrological Application of Thermal Inertia from
Remote Sensing, Second Plinius Conference on Mediterranean
Storms, 2000 October 16–18, Siena, Italy, DIFA-Contrada Macc,
Potenza.
- L. Zhenhua, Z. Yingshi, Research on the method for retrieving
soil moisture using thermal inertia model, Sci. China, Ser. D, 49
(2006) 539–545.
- H.A. Pohn, T.W. Offield, K. Watson, Thermal inertia mapping
from satellite discrimination of geologic units in Oman, J. Res.
US Geol. Surv., 22 (1974) 147–158.
- A.B. Kahle, A.R. Gillespie, A.F.H. Goetz, Thermal inertia
imaging: a new geologic mapping tool, Geophys. Res. Lett., 3
(1976) 26–28.
- A. Verhoef, Remote estimation of thermal inertia and soil heat
flux for bare soil, Agric. For. Meteorol., 123 (2004) 221–236.
- W. Verstraeten, F. Veroustraete, C.J. van der Sande, I. Grootaers, J.
Feyen, Soil moisture retrieval using thermal inertia, determined
with visible and thermal spaceborne data, validated for
European forests, Remote Sens. Environ., 101 (2006) 299–314.
- F. Veroustraete, Q. Li, W. Verstraeten, X. Chen, A. Bao, Q. Dong,
T. Liu, P. Willems, Soil moisture content retrieval based on
apparent thermal inertia for Xinjiang province in China, Int. J.
Remote Sens., 33 (2012) 3870–3885.
- J.C. Price, Using spatial context in satellite data to infer regional
scale evapotranspiration, IEEE Trans. Geosci. Remote Sens., 28
(1990) 940–948. doi:10.1109/36.58983.
- X. Wang, H. Xie, Different responses of MODIS-derived NDVI
to root-zone soil moisture in semi-arid and humid regions, J.
Hydrol., 340 (2007) 12–24.
- R.R. Gillies, W.P. Kustas, T.N. Carlson, J. Cui, K.S. Humes, A
verification of the ‘Triangle’ method for obtaining surface soil
water content and energy fluxes from remote measurements of
the normalized difference vegetation index (NDVI) and surface
temperature, Int. J. Remote Sens., 18 (1997) 3145–3166. doi:
10.1080/014311697217026.
- J.Y. Park, S.R. Ahn, S.J. Hwang, C.H. Jang, G.A. Park, S.J.
Kim, Evaluation of MODIS NDVI and LST for indicating soil
moisture of forest areas based on SWAT modeling, Paddy Water
Environ., 12 (2014) S77–S88.
- G. Bourazanis, P. Kerkides, Evaluation of Sparta’s Municipal
Wastewater Treatment Plant’s Effluent as an Irrigation Water
Source According to Greek Legislation, Water is Necessary for
Life (Win4life), International Conference Proceedings, 2015, Tinos.
- G. Bourazanis, P. Kerkides, Evaluation of Sparta’s municipal
wastewater treatment plant’s effluent as an irrigation water
source according to Greek Legislation, Desal. Wat. Treat., 53
(2015) 3427–3437.
- G. Kargas, P. Kerkides, Performance of the THETA PROBE ML2
in the presence of nonuniform soil water profiles, Soil Tillage
Res., 103 (2009) 425–432.
- G. Kargas, P. Κerkides, M.S. Seyfried, Response of three soil water
sensors to variable solution electrical conductivity in different
soils, Vadose Zone J., 13 (2014). doi:10.2136/vzj2013.09.0169.
- G. Kargas, P. Kerkides, Water content determination in mineral
and organic porous media by ML2 THETA PROBE, Irrig. Drain.,
57 (2008) 435–449.
- G. Kargas, P. Kerkides, Evaluation of a dielectric sensor for
measurement of soil water electrical conductivity, J. Irrig. Drain.
Eng., 136 (2010) 553–558.
- Z. Wan, New refinements and validation of the MODIS
land-surface temperature/emissivity products, Remote Sens.
Environ., 112 (2008) 59–74.
- E.E. Maeda, D.A. Wiberg, P.K.E. Pellikka, Estimating reference
evapotranspiration using remote sensing and empirical models
in a region with limited ground data availability in Kenya,
Appl. Geogr., 31 (2011) 251–258.
- K. Wang, Z. Wan, D. Wang, M. Sparrow, J. Liu, X. Zhou, S.
Haginova, Estimation of surface long wave radiation and
broadband emissivity using MODIS land surface temperature/
emissivity products, J. Geophys. Res., 110 (2005) D11109.
- C.J. Tucker, Red and photographic infrared linear combinations for
monitoring vegetation, Remote Sens. Environ., 8 (1979) 127–150.
- D.S. Mitra, T.J. Majumdar, Thermal inertia mapping over the
Brahmaputra basin, India using NOAA-AVHRR data and its
possible geological applications, Int. J. Remote Sens., 225 (2004)
3245–3260.
- C. Cammalleri, C. Agnese, G. Ciraolo, M. Minacapilli, G.
Provenzano, G. Rallo, Actual evapotranspiration assessment
by means of a coupled energy/hydrologic balance model:
Validation over an olive grove by means of scintillometry and
measurements of soil water contents, J. Hydrol., 392 (2010)
70–82.
- M.Th. van Genuchten, A closed-form equation for predicting
the hydraulic conductivity of unsaturated soils, Soil Sci. Soc.
Am. J., 44 (1980) 892–898.
- R.H. Brooks, A.T. Corey, Hydraulic Properties of Porous Media,
Hydrology Papers, no 3, Colorado State University, Fort Collins,
Colorado, 1964.
- A. Poulovasilis, Hysteresis of pore water, an application of the
concept of independent domains, Soil Sci., 93 (1962) 405–412.
- T.J. Farrar, S.E. Nicholson, A.R. Lare, The influence of soil type
on the relationships between NDVI, rainfall, and soil moisture
in semiarid Botswana: II. NDVI response to soil moisture,
Remote Sens. Environ., 50 (1994) 121–133.
- C.J. Willmot, Some comments on the evaluation of model
performance, Bull. Am. Meteorol. Soc., 63 (1982) 1309–1313.
- C.J. Willmott, S.M. Robesonb, K. Matsuura, A refined index of
model performance, Int. J. Climatol., 32 (2012) 2088–2094.
- E. Taktikou, G. Bourazanis, G. Papaioannou, P. Kerkides,
Prediction of soil moisture from remote sensing data, Proc.
Eng., 162 (2016) 309–316.
- M.T. Schnur, H. Xie, X. Wang, Estimating root zone soil
moisture at distant sites using MODIS NDVI and EVI in a semiarid
region of southwestern USA, Ecol. Inf., 5 (2010) 400–409.