References

  1. E.G. Njoku, J.A. Kong, Theory for passive microwave remote sensing of near-surface soil moisture, J. Geophys. Res., 82 (1977) 3108–3118.
  2. E.G. Njoku, D. Entekhabi, Passive microwave remote sensing of soil moisture, J. Hydrol., 184 (1996) 101–129.
  3. J.R. Piepmeier, P. Focardi, K.A. Horgan, J. Knuble, N. Ehsan, J. Lucey, C. Brambora, P.R. Brown, P.J. Hoffman, R.T. French, R.L. Mikhaylov, E.-Y. Kwack, E.M. Slimko, D.E. Dawson, D. Hudson, J. Peng, P.N. Mohammed, G. De Amici, A.P. Freedman, J. Medeiros, F. Sacks, R. Estep, M.W. Spencer, C.W. Chen, K.B. Wheeler, W.N. Edelstein, P.E. O’Neill, E.G. Njoku, SMAP L-band microwave radiometer: instrument design and first year on orbit, IEEE Trans. Geosci. Remote Sens., 55 (2017) 1954–1966.
  4. J.C. Price, On the analysis of thermal infrared imagery: the limited utility of apparent thermal inertia, Remote Sens. Environ., 18 (1985) 59–73.
  5. Y. Xue, A.P. Cracknell, Advanced thermal inertia modelling, Int. J. Remote Sens., 16 (1995) 431–446.
  6. J.A. Sobrino, M.H. El Kharraz, Combining afternoon and morning NOAA satellites for thermal inertia estimation: 2 methodology and application, J. Geophys. Res., 104 (1999) 9455–9465.
  7. T. Yu, G.L. Tian, The application of thermal inertia method the monitoring of soil moisture of north china plain based on NOAA-AVHRR data, J. Remote Sens., 1 (1997) 24–31.
  8. V. Tramutoli, P. Clamps, M. Marella, N. Pergola, C. Sileo, Feasibility of Hydrological Application of Thermal Inertia from Remote Sensing, Second Plinius Conference on Mediterranean Storms, 2000 October 16–18, Siena, Italy, DIFA-Contrada Macc, Potenza.
  9. L. Zhenhua, Z. Yingshi, Research on the method for retrieving soil moisture using thermal inertia model, Sci. China, Ser. D, 49 (2006) 539–545.
  10. H.A. Pohn, T.W. Offield, K. Watson, Thermal inertia mapping from satellite discrimination of geologic units in Oman, J. Res. US Geol. Surv., 22 (1974) 147–158.
  11. A.B. Kahle, A.R. Gillespie, A.F.H. Goetz, Thermal inertia imaging: a new geologic mapping tool, Geophys. Res. Lett., 3 (1976) 26–28.
  12. A. Verhoef, Remote estimation of thermal inertia and soil heat flux for bare soil, Agric. For. Meteorol., 123 (2004) 221–236.
  13. W. Verstraeten, F. Veroustraete, C.J. van der Sande, I. Grootaers, J. Feyen, Soil moisture retrieval using thermal inertia, determined with visible and thermal spaceborne data, validated for European forests, Remote Sens. Environ., 101 (2006) 299–314.
  14. F. Veroustraete, Q. Li, W. Verstraeten, X. Chen, A. Bao, Q. Dong, T. Liu, P. Willems, Soil moisture content retrieval based on apparent thermal inertia for Xinjiang province in China, Int. J. Remote Sens., 33 (2012) 3870–3885.
  15. J.C. Price, Using spatial context in satellite data to infer regional scale evapotranspiration, IEEE Trans. Geosci. Remote Sens., 28 (1990) 940–948. doi:10.1109/36.58983.
  16. X. Wang, H. Xie, Different responses of MODIS-derived NDVI to root-zone soil moisture in semi-arid and humid regions, J. Hydrol., 340 (2007) 12–24.
  17. R.R. Gillies, W.P. Kustas, T.N. Carlson, J. Cui, K.S. Humes, A verification of the ‘Triangle’ method for obtaining surface soil water content and energy fluxes from remote measurements of the normalized difference vegetation index (NDVI) and surface temperature, Int. J. Remote Sens., 18 (1997) 3145–3166. doi: 10.1080/014311697217026.
  18. J.Y. Park, S.R. Ahn, S.J. Hwang, C.H. Jang, G.A. Park, S.J. Kim, Evaluation of MODIS NDVI and LST for indicating soil moisture of forest areas based on SWAT modeling, Paddy Water Environ., 12 (2014) S77–S88.
  19. G. Bourazanis, P. Kerkides, Evaluation of Sparta’s Municipal Wastewater Treatment Plant’s Effluent as an Irrigation Water Source According to Greek Legislation, Water is Necessary for Life (Win4life), International Conference Proceedings, 2015, Tinos.
  20. G. Bourazanis, P. Kerkides, Evaluation of Sparta’s municipal wastewater treatment plant’s effluent as an irrigation water source according to Greek Legislation, Desal. Wat. Treat., 53 (2015) 3427–3437.
  21. G. Kargas, P. Kerkides, Performance of the THETA PROBE ML2 in the presence of nonuniform soil water profiles, Soil Tillage Res., 103 (2009) 425–432.
  22. G. Kargas, P. Κerkides, M.S. Seyfried, Response of three soil water sensors to variable solution electrical conductivity in different soils, Vadose Zone J., 13 (2014). doi:10.2136/vzj2013.09.0169.
  23. G. Kargas, P. Kerkides, Water content determination in mineral and organic porous media by ML2 THETA PROBE, Irrig. Drain., 57 (2008) 435–449.
  24. G. Kargas, P. Kerkides, Evaluation of a dielectric sensor for measurement of soil water electrical conductivity, J. Irrig. Drain. Eng., 136 (2010) 553–558.
  25. Z. Wan, New refinements and validation of the MODIS land-surface temperature/emissivity products, Remote Sens. Environ., 112 (2008) 59–74.
  26. E.E. Maeda, D.A. Wiberg, P.K.E. Pellikka, Estimating reference evapotranspiration using remote sensing and empirical models in a region with limited ground data availability in Kenya, Appl. Geogr., 31 (2011) 251–258.
  27. K. Wang, Z. Wan, D. Wang, M. Sparrow, J. Liu, X. Zhou, S. Haginova, Estimation of surface long wave radiation and broadband emissivity using MODIS land surface temperature/ emissivity products, J. Geophys. Res., 110 (2005) D11109.
  28. C.J. Tucker, Red and photographic infrared linear combinations for monitoring vegetation, Remote Sens. Environ., 8 (1979) 127–150.
  29. D.S. Mitra, T.J. Majumdar, Thermal inertia mapping over the Brahmaputra basin, India using NOAA-AVHRR data and its possible geological applications, Int. J. Remote Sens., 225 (2004) 3245–3260.
  30. C. Cammalleri, C. Agnese, G. Ciraolo, M. Minacapilli, G. Provenzano, G. Rallo, Actual evapotranspiration assessment by means of a coupled energy/hydrologic balance model: Validation over an olive grove by means of scintillometry and measurements of soil water contents, J. Hydrol., 392 (2010) 70–82.
  31. M.Th. van Genuchten, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44 (1980) 892–898.
  32. R.H. Brooks, A.T. Corey, Hydraulic Properties of Porous Media, Hydrology Papers, no 3, Colorado State University, Fort Collins, Colorado, 1964.
  33. A. Poulovasilis, Hysteresis of pore water, an application of the concept of independent domains, Soil Sci., 93 (1962) 405–412.
  34. T.J. Farrar, S.E. Nicholson, A.R. Lare, The influence of soil type on the relationships between NDVI, rainfall, and soil moisture in semiarid Botswana: II. NDVI response to soil moisture, Remote Sens. Environ., 50 (1994) 121–133.
  35. C.J. Willmot, Some comments on the evaluation of model performance, Bull. Am. Meteorol. Soc., 63 (1982) 1309–1313.
  36. C.J. Willmott, S.M. Robesonb, K. Matsuura, A refined index of model performance, Int. J. Climatol., 32 (2012) 2088–2094.
  37. E. Taktikou, G. Bourazanis, G. Papaioannou, P. Kerkides, Prediction of soil moisture from remote sensing data, Proc. Eng., 162 (2016) 309–316.
  38. M.T. Schnur, H. Xie, X. Wang, Estimating root zone soil moisture at distant sites using MODIS NDVI and EVI in a semiarid region of southwestern USA, Ecol. Inf., 5 (2010) 400–409.