References

  1. J.S. Vrouwenvelder, J.A.M. van Paassen, H.C. Folmer, J.A.M.H. Hofman, M.M. Nederlof, D. van der Kooij, Biofouling of membranes for drinking water production, Desalination, 118 (1998) 157–166.
  2. J.S. Vrouwenvelder, S.A. Manolarakis, J.P. van der Hoek, J.A.M. van Paassen, W.G.J. van der Meer, J.M.C. van Agtmaal, H.D.M. Prummel, J.C. Kruithof, M.C.M. van Loosdrecht, Quantitative biofouling diagnosis in full scale nanofiltration and reverse osmosis installations, Water Res., 42 (2008) 4856–4868.
  3. O. Ferrer, S. Casas, C. Galvañ, F. Lucena, A. Bosch, B. Galofré, J. Mesa, J. Jofre, X. Bernat, Direct ultrafiltration performance and membrane integrity monitoring by microbiological analysis, Water Res., 83 (2015) 121–131.
  4. S. Jeong, G. Naidu, S. Vigneswaran, C.H. Ma, S.A. Rice, A rapid bioluminescence-based test of assimilable organic carbon for seawater, Desalination, 317 (2013) 160–165.
  5. M.W. LeChevallier, Coliform regrowth in drinking water: a review, J. AWWA, 82 (1990) 74–86.
  6. D. van der Kooij, A. Visser, W.A.M. Hijnen, Determining the concentration of easily assimilable organic carbon in drinking water, J. AWWA, 74 (1982) 540–545.
  7. J.C. Joret, Y. Lévi, Méthode rapide d’évaluation du carbone éliminable des eaux par voies biologiques, La Tribune du CEBEDEAU, 510 (1986) 3–9.
  8. G. Stanfield, P.H. Jago, The Development and Use of a Method for Measuring the Concentration of Assimilable Organic Carbon in Water, WRC Environment Report, 1987.
  9. D. van der Kooij, H.R. Veenendaal, Regrowth Problems and Biological Stability Assessment in the Netherlands, D. van der Kooij, Paul W.J.J. van der Wielen, Eds. Microbial Growth in Drinking-Water Supplies: Problems, Causes, Control and Research Needs, IWA Publishing, 2014.
  10. L. Weinrich, M. LeChevallier, C.N. Haas, Contribution of assimilable organic carbon to biological fouling in seawater reverse osmosis membrane treatment, Water Res., 101 (2016) 203–213.
  11. I.C. Escobar, A.A. Randall, Sample storage impact on the assimilable organic carbon (AOC) bioassay, Water Res., 34 (2000) 1680–1686.
  12. L.A. Kaplan, T.L. Bott, D.J. Reasoner, Evaluation and simplification of the assimilable organic carbon nutrient bioassay for bacterial growth in drinking water, Appl. Environ. Microbiol., 59 (1993) 1532–1539.
  13. F.A. Kemmy, J.C. Fry, R.A. Breach, Development and operational implementation of a modified and simplified method for determination of assimilable organic carbon (AOC) in drinking water, Water Sci. Technol., 21 (1989) 155–159.
  14. F.A. Hammes, T. Egli, New method for assimilable organic carbon determination using flow-cytometric enumeration and a natural microbial consortium as inoculum, Environ. Sci. Technol., 39 (2005) 3289–3294.
  15. M.W. LeChevallier, N.E. Shaw, L.A. Kaplan, T.L. Bott, Development of a rapid assimilable organic carbon method for water, Appl. Environ. Microbiol., 59 (1993) 1526–1531.
  16. P.L. Haddix, N.J. Shaw, M.W. LeChevallier, Characterization of bioluminescent derivatives of assimilable organic carbon test bacteria, Appl. Environ. Microbiol., 70 (2004) 850–854.
  17. P.S. Ross, F. Hammes, M. Dignum, A. Magic-Knezev, B. Hambsch, L.C. Rietveld, A comparative study of three different assimilable organic carbon (AOC) methods: results of a roundrobin test, Water Sci. Technol., 13 (2013) 1024–1033.
  18. L.A. Weinrich, O.D. Schneider, M.W. LeChevallier, Bioluminescence-based method for measuring assimilable organic carbon in pretreatment water for reverse osmosis membrane desalination, Appl. Environ. Microbiol., 77 (2011) 1148–1150.
  19. J.T. Staley, A. Konopka, Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats, Annu. Rev. Microbiol., 39 (1985) 321–346.
  20. G. Liu, E.J. Van der Mark, J.Q.J.C. Verberk, J.C. Van Dijk, Flow cytometry total cell counts: a field study assessing microbiological water quality and growth in unchlorinated drinking water distribution systems, Biomed Res. Int., 2013 (2013) 10.
  21. J.R. Postgate, Chapter XVIII viable counts and viability, Methods Microbiol., 1 (1969) 611–628.
  22. M. Montes, E.A. Jaensson, A.F. Orozco, D.E. Lewis, D.B. Corry, A general method for bead-enhanced quantitation by flow cytometry, J. Immunol. Methods, 317 (2006) 45–55.
  23. A.W. Thompson, G. van den Engh, A multi-laser flow cytometry method to measure single cell and population-level relative fluorescence action spectra for the targeted study and isolation of phytoplankton in complex assemblages, Limnol. Oceanogr. Methods, 14 (2016) 39–49.
  24. J.R. Knowles, Enzyme-catalyzed phosphoryl transfer reactions, Annu. Rev. Biochem., 49 (1980) 877–919.
  25. J.J. Webster, G.J. Hampton, J.T. Wilson, W.C. Ghiorse, F.R. Leach, Determination of microbial cell numbers in subsurface samples, Ground Water, 23 (1985) 17–25.
  26. D.M. Karl, Cellular nucleotide measurements and applications in microbial ecology, Microbiol. Rev., 44 (1980) 739–796.
  27. W.A.M. Hijnen, D. Biraud, E.R. Cornelissen, D. van der Kooij, Threshold concentration of easily assimilable organic carbon in feedwater for biofouling of spiral-wound membranes, Environ. Sci. Technol., 43 (2009) 4890–4895.
  28. O. Holm-Hansen, C.R. Booth, The measurement of adenosine triphosphate in the ocean and its ecological significance, Limnol. Oceanogr., 11 (1966) 510–519.
  29. F. Hammes, F. Goldschmidt, M. Vital, Y. Wang, T. Egli, Measurement and interpretation of microbial adenosine triphosphate (ATP) in aquatic environments, Water Res., 44 (2010) 3915–3923.
  30. A. Magic-Knezev, D. van der Kooij, Optimisation and significance of ATP analysis for measuring active biomass in granular activated carbon filters used in water treatment, Water Res., 38 (2004) 3971–3979.
  31. J.M. Veza, M. Ortiz, J.J. Sadhwani, J.E. Gonzalez, F.J. Santana, Measurement of biofouling in seawater: some practical tests, Desalination, 220 (2008) 326–334.
  32. G.L. Amy, S.G. Salinas Rodriguez, M.D. Kennedy, J.C. Schippers, S. Rapenne, P.J. Remize, C. Barbe, C.L. de O. Manes, N.J. West, P.L. Lebaron, D. van der Kooij, H. Veenendaal, G. Schaule, K. Petrowski, S. Huber, L.N. Sim, Y. Ye, V. Chen, A.G. Fane, Water Quality Assessment Tools, Membrane-based Desalination: An Integrated Approach (MEDINA), IWA Publishing, 2011, pp. 3–32.
  33. C. van Slooten, T. Wijers, A.G.J. Buma, L. Peperzak, Development and testing of a rapid, sensitive ATP assay to detect living organisms in ballast water, J. Appl. Phycol., 27 (2015) 2299–2312.
  34. F.X. Simon, E. Rudé, J. Llorens, S. Baig, Study on the removal of biodegradable NOM from seawater using biofiltration, Desalination, 316 (2013) 8–16.
  35. F. Hammes, C. Berger, O. Köster, T. Egli, Assessing biological stability of drinking water without disinfectant residuals in a full-scale water supply system, J. Water Supply Res. Technol. AQUA, 59 (2010) 31–40.
  36. L.O. Villacorte, Algal Blooms and Membrane Based Desalination Technology, Delft University of Technology, CRC Press/Balkema, PO Box 11320, 2301 EH Leiden, The Netherland, 2014.
  37. A. Nescerecka, T. Juhna, F. Hammes, Behavior and stability of adenosine triphosphate (ATP) during chlorine disinfection, Water Res., 101 (2016) 490–497.
  38. I. Taverniers, M. De Loose, E. Van Bockstaele, Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance, TrAC, Trends Anal. Chem., 23 (2004) 535–552.
  39. M.J. Hubley, B.R. Locke, T.S. Moerland, The effects of temperature, pH, and magnesium on the diffusion coefficient of ATP in solutions of physiological ionic strength, Biochim. Biophys. Acta, 1291 (1996) 115–121.
  40. C. Bergman, Y. Kashiwaya, R.L. Veech, The effect of pH and free Mg2+ on ATP linked enzymes and the calculation of Gibbs free energy of ATP hydrolysis, J. Phys. Chem. B, 114 (2010) 16137–16146.
  41. J. Ma, A.M. Ibekwe, M. Leddy, C.-H. Yang, D.E. Crowley, Assimilable organic carbon (AOC) in soil water extracts using vibrio harveyi BB721 and its implication for microbial biomass, PLoS One, 7 (2012) e28519.
  42. Ó.K. Vang, C.B. Corfitzen, C. Smith, H.-J. Albrechtsen, Evaluation of ATP measurements to detect microbial ingress by wastewater and surface water in drinking water, Water Res., 64 (2014) 309–320.
  43. S. Velten, F. Hammes, M. Boller, T. Egli, Rapid and direct estimation of active biomass on granular activated carbon through adenosine tri-phosphate (ATP) determination, Water Res., 41 (2007) 1973–1983.