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A B S T R A C T

A parameter calibration of activated sludge models (ASMs) was performed to predict effluent
chemical oxygen demand (COD), total nitrogen (TN), total phosphate (TP) and total suspended solid
(TSS) concentrations of the enhanced biological phosphate removal process. Such calibration is an
essential process for simulating the behavior of real-world wastewater treatment processes properly.
Six different simulations were attempted to develop a reliable calibration method using two different
parameter estimation methods for three objective functions. For the parameter estimation method,
dynamic parameter estimation (DPE) and static parameter estimation (SPE) were investigated. The
objective functions were based on the effluent quality (EQ) index of benchmark simulation and the
effluent quality standards (EQS) in Korea. When using the same parameter estimation method, the
predicted errors with the EQS-based objective functions could be decreased by approximately 20%
over EQ index-based functions for TSS. When using the same objective function, the error with DPE
was around 40% less than the error with SPE for TSS and TP. Therefore, applying DPE to the
objective function based on the EQS was a proper calibration method of the ASM to predict a reliable
effluent for the real process.
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1. Introduction

The activated sludge models (ASMs) that were
developed by International Water Association (IWA) task
group are well accepted for simulating the behavior of the
biological wastewater treatment process [1–4]. Research-
ers can select a specific model among ASM1, ASM2,
ASM2d, or ASM3 depending on the target process and
contaminant components that they are concerning [5].

*Corresponding author.

These models have been used for various objectives such
as process design, optimal operation, and effluent pre-
diction, etc [6]. The calibration of ASMs is essential to
simulate properly the behavior of real wastewater treat-
ment processes. The calibration procedure is as follows:
selection of target process and water quality components,
sensitivity analysis of model parameters, parameter
estimation, and model validation [7–11].

The sensitivity analysis helps to select the sensitive
parameters that should be estimated for optimizing a
mathematical model to simulate the real process. Sensi-
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tivity analysis is the first major task to improve the model
predictability [12]. Among many approaches suggested
from previous works step variation of a single parameter
was reported to be the simplest [13]. The sensitivity index
is also important for effectively selecting sensitive
parameters The effluent quality (EQ) index, which was
originally suggested as a performance index of controllers
[14], was used as a sensitivity index by many researchers
[13,15].

In general, the estimation of sensitive parameters was
carried out by cross-matching simulated data with the
measured data. Mathematical parameter estimation was
also introduced and validated recently. The model para-
meter values should be updated when the simulation is
performed for a long period because the characteristics of
the biological reaction may be altered due to the variations
of influent characteristics and the operating conditions;
however, many models have used the static parameter
estimation (SPE) technique due to its simplicity [16]. The
SPE technique uses a whole set of data for estimating
model parameters and obtains a set of parameters.
Recently ASMs are becoming useful for predictive control
of the process. For the purpose of process control, the SPE
could not provide enough accuracy for prediction. Due to
this reduced accuracy, a dynamic parameter estimation
(DPE) technique is proposed in this study. The DPE uses
data from an initial short period which are updated
periodically. Recent development in computing power
enables researchers to use the DPE easily. 

In this study, the DPE technique was proposed to
improve ASM predictability. For this parameter estima-
tion, a new objective function based on the EQS was also
proposed. Superiority of the proposed technique and
objective function was verified by comparing the SPE
technique and the objective function based on the EQ
index, respectively.

2. Materials and methods

For the DPE, influent and effluent data from the initial
7 days were used to estimate parameters. Then, the
estimated parameters were used to simulate the next
following 7 days. This procedure was repeated continu-
ously. For the SPE, only one set of parameter values was
estimated using all influent and effluent data for 150 days.
These estimated parameter values were used to predict
effluent concentration for the whole simulation periods.

Three objective functions were considered in order to
develop a reliable result for estimating parameter values.
The first set was based on the EQ index that was
presented by the IWA Simulation Benchmark to evaluate
the performance of various controllers in a WWTP [14].
The other sets were based on the EQS in Korea to reduce

Fig. 1. General calibration procedure of activated sludge
models.

the high weights of nitrogen and phosphate components.
A detailed explanation is provided later in this paper.

The calibration of the ASM for the target process was
performed by the general procedure of: gathering field
plant data (Step 1), defining an objective function based on
obtained process data for the simulation (Step 2),
performing sensitivity analysis of model parameters
(Step 3), estimating the selected sensitive parameters with
measured influent and effluent data (step 4), and evalu-
ating the simulated effluent using estimated values of the
parameters (Step 5).

2.1. Gathering field plant data (Step 1)

The data for model calibration were obtained from the
D-city wastewater plant, which has been operated as a
process of five-stage step-feed enhanced biological phos-
phate removal (fsEBPR) for approximately 250 days from
July, 2002 to March, 2003 [16]. The schematic diagram of
the fsEBPR process is shown in Fig. 2. Each volume of
biological reactors and settler is displayed in Table 1,
while influent characteristics and operating con-ditions
are summarized in Table 2. The daily measured influent
data were used for simulation, and the missing data were
interpolated by using a time series model [17].

2.2. Defining objective function (Step 2)

The effluent biological oxygen demand (BOD), total
suspended solid (TSS), total nitrogen (TN) and total
phosphate (TP) concentrations from the fsEBPR process
plant were measured. Then, the objective function (OF)
was defined to minimize the sum of weighted absolute
errors of the effluent components for 150 days and was
built as follows:
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Table 1
Reactor volume

Volume (m3)

Pre-anoxic
Anaerobic
Anoxic #1
Anoxic #2
Aerobic
Settler

1,036.8
1,036.8
1,036.8
2,073.6
4,147.2
5,153.3

Fig. 2. Schematic diagram of fsEBPR process.

Table 2
Influent characteristics and operating conditions in fsEBPR the process

Influent component (mg/L) Flow rate (m3/d) Temperature, EC

COD NH4-N NO3-N PO4-P Influent Internal
recycle

Sludge
recycle

Sludge
waste

Minimum
Average
Maximum

60.2
233.6
428.0

7.6
23.9
31.7

0.0
0.9
3.0

1.0
2.3
3.3

10,573
18,453
26,213

14,300
2,166

40,647

7,400
14,268
26,203

45.5
147.3
216.0

12.5
19.9
26.7

Table 3
Three sets of each component weight for calculating the objec-
tive function

TSS BOD TN TP

Case 1 1 1 10 25
Case 2 2 2 1 10
Case 3 1 1 1 5

where $TSS, $BOD, and $TP are the weighting factors for TSS,
BOD, TN, and TP components, respectively. The subscript
obs and sim represent observed and simulated con-
centration, respectively. The subscript e represents the
effluent.

The three combinations of weighting factors were
considered in order to develop a reliable objective func-
tion. The first set was based on the EQ index (Case 1),
while the second set was based on the inverse ratio of
effluent quality standards (EQS), BOD 10 mg/L, TSS 10
mg/L, TN 20 mg/L and TP 2 mg/L in Korea was (Case 2).
Finally, the weighting factor of TN was doubled in order
to avoid the possibility that the calibration result can be
affected by the effluent TP predominantly because the
weight of the phosphate was ten times the weight of the
nitrogen in the second set (Case 3). Table 3 illustrates the
weight of each component applied to the three sets.

2.3. Sensitivity analysis (Step 3)

Sensitivity analysis was performed using the reactor
layout. Influent characteristics of the fsEBPR process were
installed in D-city. Mathematical models were constructed
by combining ASM3 for considering organic and nitrogen
[4] with modified Bio-P model for phosphate [15] and
one-dimensional model for solid settling [18]. The method
of step variation of single parameter [13], which is one of
the simplest sensitivity analyses, was applied to select
more sensitive parameters in the mathematical models. 

The sensitivity index (SI) was defined as the maximum
derivative of the objective function. Each parameter was
changed at the range of ±50% of reference parameter
values which have been suggested in the literature [5,19].

(2)   
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where  2i is ith parameter. The higher the SI, the more
sensitive the parameter.

2.4. Parameter estimation (Step 4)

Both DPE and SPE were performed on three types of
objective functions as mentioned earlier. Results for the
process effluent, predicted by using the estimated para-
meter values, were compared. The proper parameters
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were determined based on the convergence of objective
functions with genetic algorithm [20]. The applied genetic
operators were tournament selection, uniform crossover,
flip mutation and elitism. The number of the population
was five.

2.5. Model validation (Step 5)

The model validation was carried out using the
100-day data set for SPE and the 7-day data set for DPE.
These data were never used during the parameter
estimation.

3. Results and discussion

Six different simulations were attempted to develop a
reliable calibration method using two different types of
parameter estimation methods for three objective func-
tions. Detailed description of the simulation results is
given below.

3.1. Sensitivity analysis

The result from the sensitivity analysis is shown in
Table 4. The selected sensitive parameters by Case 1 based
on EQ were YH,O2, YH,NO, :max,A, rh and rp. The sensitive
parameters chosen by Cases 2 and 3 based on the EQS
were YH,O2, iSS,Xi, v0, rh and rp. The number of parameters
which were related to the biological reaction and settling
was close to each other. This indicates that the effluent of
the fsEBPR process was strongly affected by the settling
process.

3.2. Parameter estimation

The values of the selected sensitive parameters were
estimated by a genetic algorithm. The results of simula-
tions using the estimated parameter values are displayed
in Figs. 3 and 4 and Table 5. The average absolute errors
between measured and predicted effluent concentrations
for all simulation cases were presented in Table 5. Those
results show comparison among results from different
methods used.

Fig. 3 shows the predicted effluent profiles using the
reference parameter values and using the values deter-
mined by static parameter estimation (SPE) with three
objective functions for BOD, TN, TP and TSS. In the case
of BOD, TN and TP, those results predicted by using
reference values (reference in Fig. 3) were similar to the
predicted results by using three ways of static parameter
estimation (SPE in Fig. 3). This means that the static
parameter estimation could not significantly improve the
predictability of the model. However, it shows that the
predicted values from SPE 2 and 3 were more similar to
the measured values than those by SPE1 for TSS. This
means that the objective function determined by applying
weighting factor sets based on effluent quality standard is
more reliable.

The predicted effluent concentrations obtained by the
dynamic parameter estimation are presented in Fig. 4. As
shown in this figure, there was no significant difference in
effluent concentration according to the three objective
functions for BOD and TN. By using the dynamic para-
meter estimation for TP, the decreased errors between
predicted and measured values was only about 9.0% as
compared to the errors derived from the case using
reference values. However, it shows that three DPEs can
reduce the errors by 71.1% (decreasing from 2.6 mg/L to
0.8 mg/ L) of error caused by using the reference values of
the parameters. In addition, the decreased errors with
DPE 1, 2 and 3 for TSS were 44.2% (4.0 mg/L), 65.0%
(5.9 mg/L) and 72.1% (2.5 mg/L) respectively as com-
pared to the derived error (9.0 mg/L) by using the
reference values of the parameters.

The predicted effluent concentrations obtained by the
dynamic parameter estimation are presented in Fig. 4. As
shown in this figure, there was no significant difference in

Table 4 
Selected sensitivity parameters for three cases of objective
function

Sensitivity parameters

Case 1
Case 2
Case 3

YH,O2

YH,O2

YH,O2

YH,NO

iSS,Xi

iSS,Xi

rh

rh

rh

rp

rp

rp

Table 5
Average absolute errors between measured and predicted effluent concentrations for seven simulation cases and four components

Reference SPE1 SPE2 SPE3 DPE1 DPE2 DPE3

BOD (mg/L) 4.3 3.5 2.9 3.8 4.0 3.9 4.0
TN (mg/L) 2.4 2.2 2.2 1.8 2.2 2.2 2.1
TP (mg/L) 2.6 1.3 1.3 1.3 0.8 0.8 0.8
TSS (mg/L) 9.0 6.4 4.4 4.7 5.0 3.1 2.5
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Fig. 3. Comparison between predicted effluent profiles by the reference values of parameters and by estimated values using
static parameter estimation with three objective functions.

Fig. 4. Comparison between predicted effluent profiles by the reference values of parameters and by estimated values using
dynamic parameter estimation with three objective functions.
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Fig. 5. Comparison between predicted effluent profiles by using static parameter estimation and dynamic parameter estimation.

effluent concentration according to the three objective
functions for BOD and TN. By using the dynamic para-
meter estimation for TP, the decreased errors between
predicted and measured values was only about 9.0% as
compared to the errors derived from the case using
reference values. However, it shows that three DPEs can
reduce the errors by 71.1% (decreasing from 2.6 mg/L to
0.8 mg/ L) of error caused by using the reference values of
the parameters. In addition, the decreased errors with
DPE 1, 2 and 3 for TSS were 44.2% (4.0 mg/L), 65.0%
(5.9 mg/L) and 72.1% (2.5 mg/L) respectively as com-
pared to the derived error (9.0 mg/L) by using the
reference values of the parameters.

Fig. 5 shows the comparisons between the pre-
dictability with static parameter estimation (SPE2) and
dynamic parameter estimation (DPE2). There were no
significant differences between the predicted effluent
concentrations with SPE2 and DPE2 for TN. The absolute
error of BOD with SPE2 was around 2.0 mg/L smaller 
than that with DPE2; however, the reduced error resulted
from SPE2 was only a 32.8% error from the reference. The
absolute errors of TP and TSS with DPE2 were smaller
than with SPE2 (about 0.5 mg/L and 1.7 mg/L for TP and
TSS). Decrease in error that resulted from DPE2 was 71.1%
and 65.0% for TP and TSS, respectively.

From the results described above, the DPE method was
proved to be better in prediction efficiency than SPE

because the SPE does not reflect the dynamic charac-
teristics of biological reactions. The objective functions
have to be amended according to actual concentrations of
effluent appropriately.

4. Conclusions

The static parameter estimation using the determined
objective functions based on the effluent quality index
(SPE1) was not able to reduce the errors between pre-
dicted and measured values because a higher weight
factor than BOD and TSS was relatively given to TP and
TN for calculating the errors. However, the SPE using the
objective functions based on EQS (SPE 2 and 3) could
decrease the error by approximately 20% from SPE1 for
TSS. It shows that the parameter estimation using the
objective functions based on the EQS can predict the
effluent more reliably.

For the case of using the same objective function, the
errors between predicted and measured effluent with
dynamic parameter estimation were fewer than the errors
with static parameter estimation for TSS and TP. This is
very likely because the simulation with static values of
parameters could not reflect the variation of the process
state. 

The dynamic parameter estimation using the objective
function based on the EQS was a proper calibration
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method for an activated sludge model to predict a reliable
effluent for the real process. Nevertheless, it was not
possible significantly to decrease the errors of all com-
ponents simultaneously. Further studies are recom-
mended in areas of modification of the process model. 

5. Symbols

iSS,Xi — Suspend solids to COD ration for Xs, gSS/gCOD
rh — Settling parameter associated with the hindered

settling component of settling velocity equation,
m3/g

rp — Settling parameter associated with the low con-
centration and slowly settling component of the
suspension, m3/g

v0 — Maximum practical settling velocity, m/d
YH,NO— Anoxic yield of heterotrophic biomass
YH,O2— Aerobic yield of heterotrophic biomass

Greek

$i — Weight value for i-component
2i — ith parameter of the mathematical model
:max,A— Maximum growth rate of autotrophic biomass,

L/d

Subscripts

obs,e — Observed effluent concentration, mg/L
sim,e — Simulated effluent concentration, mg/L
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